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TIIE !L%),ilLTON-JACOLf VOIIMUL%TION OF

TItE RESTRICTED TI:llL]E BODY PROBLEM

IN TERMS OF TIlE T\VO FLXED CENTEI{ PROBLEM

By

3htry P:_yne

Samuel Pines

_kl _11l]h'lF V

This report contains _ development of the classical llamilton-Jaeobi

perturbation tecimiques, applyin Z the kno\_n: solution of the Two Fixed Center

Problem to the Restricted Three Body Problem.

SECTIONI - INTRODUCTION

This report contains an ouLline of the development of a perturbation

procedure for solving the rcstrietud d:'.'ee body problem, ush:z the solution

of the t\vo fixed center problem as un intermediate orbit, h: the restrieted

problem, it is asstm:ed that the two primary bodies move in circles about

their center of mass, the baryeenter. The p_'imary bodies will be fixed in .q

eooi'dinate system rotating with their an_ular velocity, so that the use of the

t_:'o fLxed center problem is immediatuiy s_=ocs.ed. The two fixed center

pro_)lem was first treated by Euler, who dseovered that its equations of

motion ;tre separable in p_'olate spheriodial coordinates. A very complete

discussion of the two fixed center problem has been given by Charlier (1).

This treatment covers some of the same _,round as this report. It is from the
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IIamiltonian point of view and inclu(Ds it discussion of the action and u_n_le

variables, and tile way in \vhich the two fixed c,_.n',cr problem v:ould be used

as abasis for at)erturbation theorylor the r_trictcdproblem. The only

thinl missing from Charlier's treatment is an explicit SOhltioll Of the two

fixed ccater problem, \vi_ic}_ would be necessa:y 1or the -.ctu:_.i api)iicution to

the rcstrictcdproblcm. Formal expressions for the action and angle variables

are obtained from a more modern poh:t of view by I_ucldleim (2) Brief

discussions of the two fixed center problem arc given in many stand:_rd text

books such as Wl_ittaker (3) Landau and LifscMtz (4) and Wintner (5) Tile
o

explicit solution of the two fLxed ccntc: problem iz_s been obtained by Pines

and Pavne ((i). In tt_e present report, tMs solution will be Conlbh_ed with a

Hamihoniun devclopn".ent of the problem to show how perturbation equations

for the rcst'.'icted proLlem may be obt:_ined. A different development has been
/r,7

carried out reccntly by Lhvidson and Schulz-Arenstoru [ ). h_ this theory,

the h_itial conditions of a t\vo fixed center problem are used as parameters

and a first order cor;'ection for the restricted p:'oblem is obtained in closed

form. Second-order corrections are obtained by a numerical curve-fitth",_

sch_ine.

hl this report, Section II will contain a discussion of the restricted

problem, and the way in which the two fLxed center problem will be used. In

Section HI, tile solution of the two fixed center problem will b_ outlined in

sul'ficicnt detail fo:- the determination of the action and angle variables, wMch

is carried out in Sections IV and V. Finally in Section VIa summary will

be 9;iven of the essential steps still necessary to obtain tile solution of the

restricted problem.
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SECTION II - THE _-,Ebq ,_IC 1 lid i'.-,uBLEZI

The equations of motion of the restricted problem arc

- 3 - u' b
F, r o

(i)

where 1{ is the position vector of the vehicle in a coordinate system fLxcd he

space, i_i and i_J2 are respectively the position vectors of the vehicle from

earth and moon (\_dth magnitudes rland r.2), and _ and _t' arc the gravita-

tional constant times mass of the eard_ and moon, respectively. Since the

bar reenter (center of mass of earth "tll(l moon) nlay be regarded as a point

fixed in space, the vector R will henceforth be regarded as relative to a

system fixed in space with origin at the barycenter. The earth and moon are

taken as movinK'in circles about the baryccnter with ans-ular velocity vector

. To use the two fLxed center problem as an approximation to the restricted

problem, it is necessary to write the equations of motion in a coordinate

system in which the earth and moon arc fLxcd. Such a system is one totaling

about the barycenter with angular velocity _ relative to the fixed system.

Denotin_ the position vector in the rotath_ system by R', the equations of

motion (1) become

I_. R>

_]i' =-u--3 - _' --3 -"_-_ x R'-_ O._x (__.x!_,) (2)
rl r.2

It is readily shown that the Lazran_i.'m for the equations of motion (2) is

= _ "" - + '2 (-_ x + r l r'2

!
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and hence the momentum vector conjugate to the position vector _R_ is given

by

_P = gradil, o_= _it' _ __ x _R

and the Hamiltonian for the problem is

!

1 p2 u u
H =P • _R' -oU= _-_ -_-_ _R'xP_ rl r2

and the Hamiltonian equations are

R1 // -R2
"_P= -grad R, H = - Q × _P -'_--=g - ----ff

q r2

and

(4)

C5)

(6)

I__{' = grad p H = _P - _'qx _R' (7)

It will be noted that Eq. (7) is equivalent to Eq. (4), and that ff P is replaced using

Eq. (4), then Eq. (6) will yield the equations of motion (2).

The solution of the restricted problem will be carried out by making use of

a transformation theorem (Reference 1, Chapter 11 and Reference 12, pp 237 to

246) which states that ff the Hamiltonian of a system is H (qi' Pi' t) with qi and

Pi canonically conjugate coordinates so that the Ilamilton equations

Qi - ) H ' Pi - _, H (8)
5 Pi _qi

are satisfied and if _ (qi' Pi' t) is any function, then the variables Qi

defined by

Qi = _P---7. = Qi (qi' Pi' t), Pi= S qi =Pi(qi' Pi' t) (9)

are canonical variables for a new Hamiltonian

- _g (io)H =H. -_t

4
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regarded as a function of Qi' p. and t, so that
I

Qi- _. , P-1
i °Qi

(ii)

Now let the Hamiltonian be separated into two terms

H = H I (qi' Pi ) + H2 (qi' Pi' t) (12)

with H 1 independent of the time and such that the partial differential equation

HI (qi' 5q---_) + 5t
-0 (13)

possesses a solution for _ 1" It is seen that ff the function @1

formation theorem then the Hamilton equations become

_'1
5 (H 1 + H 2 + _) bH 2

Qi = 5P. 5P.
1 1

__i
5(H 1 +H 2+-_) 5H 2

I 5 Qi 5 Qi

is used in the trans-

(14)

by virtue of the defining Eq. (13) for ¢i "

that, since H 1 is independent of time,

Further, from Eq. (13), itis evident

1 = -ht + W(q i , Pi ) (15)

with

5W

HI (qi' 5q---_-) - h = 0 (16)

and the momenta Pi must be identified with the constants of integration of Eq.

(16) and h, the separation constant for the time. This is not to be interpreted as

meaning that the P. are constants of the motion for the Hamiltonian H. If this
1

were so, the right-hand sides of Eq. (14) would have to vanish. What the solution

of Eq. (16) for W does is to specify a function of qi and three new variables Pf

5
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This function may be used to invert Eqs. (9) to obtain qi and Pi in terms of the

new variables Pi and three others Qi" These expressions for qi and Pi may now

be inserted in H 2 for use in Eqs.- (14) from which Qi and Pi may now be obtained

as functions of time. The solution of the problem associated with H will then be

given by substituting the solutions Qi and Pi of Eqs. (14) in the expression for

qi and Pi"

To actually carry out the inversion of Eqs. (9) it must be noted that the

functional form of _i does not depend on the disturbing function ultimately to

be used. It dcpends rather on how the identification of the P. is made with the
i

h_tegration constants arising in Eq. (16). The conventional procedure is to re-

with the actiongard H I as the Hamiltonian of a new problem and identify the Pl

variables Ji of this new problem. The action variables are always three inde-

pendent functions of the integration constants and hence are themselves constant

for the problem associated with H I . Once the functional relation between the

-P. and the integration constants is determined, by identifying the P. with the
1 i

action variables Ji of H I, the conjugate coordinates Qi are defined by Eq. (9).

It will always happen that Pi and Qi so defined are constant if the Hamiltonian

is H I because from Eq. (13)

_i
_(n i + -yi---)

(_ = =0
i _P.

1

_i
_(H I + _----_)

J.=#.=- =0
i i 5Q i

(i7)

Once the functional relation between qi and Pi and Qi and Ji is established,

however, the problem associated with H I is no longer of interest. The disturbing

function H 2 is expressed in terms of Qi and Ji and the solution of the problem

associated with H is obtained by integrating Eqs. (14).

A slightly different formulation of the problem is obtained if the time inde-

pendent function W of Eq. (15) is used as the generating function of the trans-

formation rather than @I" The variables w.l conjugate to the action variables

6
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Ji are the angle variables of the problem associated with H I.

between the w.l and the Qi are given by

w it h

w. - _W _ 5(_i +ht) 5h

: 5J i 5 Ji - Qi + t 5 j---_:= u i t + Qi

The relations

5h
l). =+ --

1 _J.

being functions of the action variables. The perturbation equations for these

variables will be given, according to the transformation theorem, by

(is)

(19)

_W
b(H 1 +H 2 +T) 5H 2

_,(j. = - +
: 5J. 5J. Ul

1 1

1

5W
5CH 1 +H 2 + -_--) 5H 2

5w. 5w.
1 1

(20)

since W is independent of time and H 1 = h depends only on the action variables

and not on the angle variables. The advantage of using the angle variables rather

than the Qi is that it will always be possible to expand H 2 in a multiple Fourier

series in the angle variables and eliminate its explicit dependence on time.

To use the two fixed center problem to solve the restricted problem, the

Hamiltonian (5)for the restricted problem may be separated into terms H 1 and

H 2 as follows:

1 2 U Ul

H 1 = _- P rl r2 (21)

If H I

= - "_'• R' y P (22)

is regarded as a Hamiltonian, the associated Hamilton equations are

"R'= - gradp H 1 = P (23)

7
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and

_RI _R2
= - gradR' HI = - _ -P' 3 - i_' (24)

r 1 r 2

These last equations are just the equations of motion for the two fixed center prob-

lem, so that H 1 is the Hamiltonian of the two fixed center problem. Thus the pro-

cedure will be first to find the action and angle variables of the two fhxed center

problem and then express the disturbing function

U2 =-_._a'x__p (25)

in terms of these variables.

Before proceeding with the details of this procedure, it is desirable to make

two further transformation of the coordinates. The first will be to a coordinate

system with "_'-_,_origin at the midpoint of the earth-moon line with the earth and

moon on the x-axis at (c,0,0) and (-e,0,0) respectively. The distance between

the earth and moon is thus 2c. The z-axis will be taken in the direction of _..

The only term in the Hamiltonian affected by this transformation is the f_ • R' x p

term in which R' is measured from the baryeenter. From Figure I it is evident

Vehicle

R 1

-\ \

Moon 0 Barycenter Earth

Figure I
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From the equations for x, y, and z it is seen that

x = cqlq 2

y = c %/(ql2- i)(1 -q22) cos (p (30)

z = c _/(ql 2- 1)(1 -q22) sin q_

In this system the surfaces ql = coast _ 1 are ellipsoids of revolution about the

x-axis confocal about the earth and moon. The limiting surface ql = 1 is the

portion of the x-axis between the earth and moon, and the ellipsoids increase in

size with increasing ql" 'The surfaces -1 _ q2 = const _ 1 are hyperboloids of

revolution about the x-axis, confocal about the earth and moon. The limiting

surfaces ql = 1 and q2 = -1 are the portions of the x-axis to the right of the

earth and to the left of the moon, respectively. The surface q2 = 0 is the y-z

plane and surfaces corresponding to positive values of q2 are hyperboloids con-

cave towards the earth while those corresponding to negative values of q2 are

concave towards the moon. The angle cp is measured in the y-z plane about the

x-axis and is zero in the portion of the x-y plane for which y > 0. From Eq. (30),

it is easy to st{ow that r 1 and r 2 which appear in the Hamiltonian (5) are given

by

r I = e (ql - q2 )

r 2 = c (ql + q2 )

(31)

The equations for Pl' P2' P_ are

cql(1-q22) cos¢p

Pl = c q2 Px +
[ 9 o

_; (ql- 1) (1 - q2" )

P2 = c q l Px-

c q2 (q}- 1) cos cp

q'(q} - 1) (1 - q22)

cql(l -q:) sine)
P + P

y f(q}_ 1) (1 _q22) z

2
cq2(ql -i) sin@

p - p

Y 2) 7.

(32)

10
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/ 2
-c _ (ql - i)(i-q:)

I Ia]verting these equations to obtain Px'

obtains for H 1

s,n__+ o','}_}-,>(_-_,_oo.__z
(32)

Py and Pz in terms of Pl' P2 and p_ one

q
, (33)

.A

2

2_ i)(1 -q22)

- i£ _I

I
1 p2 _Z ,_1

H1 = E r 1 r 2I-
1 E(ql2-!l 71 2 (1-q22) p22

c (ql - q2 ) c,(ql + q2 )I
and for the disturbing function

' 2 2 c°s_LPlq2-P2ql #+# (Plql-P2q2)_] .

ql - q2

p_ sin _o

I - _/(ql___)<__q5
I

<qlq2+_--_i>}

I

I

(34)

This completes the preliminary discussion of the problem. The following sections

contain the solution of the two fixed center problem which Will be useful in the sub-

sequent determination of the generating function W from Eq. (IB) and the action

and angle variables for the two fixed center problem which will be the w. and J. of
l 1

the perturbation Eqs. (19).

I

I

I
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SECTION III - SOLUTION OF THE TWO FIXED CENTER PROBLEM

! The Hamiltonian for the two fixed center problem, obtained in the last sec-

tion is

I 1 r ql 2-I 2

H=--I 2 2Pl2 c 2

|e _-_2

!

!

2
(1 - q22 ) 2 P¢o

2 2 P2 + 2 f
ql -q2 (ql -1)(1-q22)

J

c (ql - q2 ) c (ql +q2 )

(35)

The generating function W(ql, q2' q_' PI' P2' P3 )' which will ultimately be used

to obtain the w. and P. for the perturbation equations is also a very convenient
1 1

device for obtaining a direct solution to the two fixed center problem. Recalling

that for the transformation to be canonical, one must have

I
I

I

I
I

I

5W

P2 = _ (36)

and

5W
Q i = _ . (37)

1

Replacement of Pl' P2 and pq_ by the partials of W with respect to ql' q2' and _,

respectively, in Eq. (35) gives a partial differential equation for W which is sepa-

rable. That is, a solution of the form

!

!
exists.

W = W 1 (ql' Pi ) + W2 (q2' Pi ) +w3 (q_' Pi )

It is a fairly simple matter to verify that

12

(38)
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2 2
f dWl'x f 5W _ 2

\ dqlY ='\ _q----_/=Pl

dW2.2 2f fSW'_ 2

k. d q2 J = k. 5q2 "j = P2

2

= 2 c R2 (ql)
(ql 2 - 1)2

= 2 c 2 S2

(1 - q22i 2 (q2)

2 2
dW3" f 5 W% 2 2

(39)

where

, 2

R 2 (ql) = (ql 2 - 1) (hql2 + _ + ,uc ql - fl ) - _ (40)
2 c 2

I 2

S2 (q2) = (l-q22) (-hq22 +JZ-e _ q2 +fl) (_2 (41)
2c

In Equations (40) and (41), h is the constant energy of the two fixed center problem

and is to be identified with the constant h of Equation (15) in the previous section.

The separation constants are _ and fl. It is easily shown that _ is the x-component

of angular momentum about the line of centers. The constant f3 has no such simple

interpretation.

At this stage everything necessary for the solution of the two fixed center prob-

lem is available; further discussion of the generating function will be deferred to

the next section.

The Hamilton equations for the two fixed center problem give the time de-

rivatives of ql' q2 and _ as

_i2
5H 1

P2

2
Pl ql - i

2 2 2
c Q_ -

q2

2
P2 1 - q2

2 2 2
c ql -q2

(42)

13
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_ 5H P9
= 2 2 2 (42)

5Pq9 c (ql - i) (i -q2 )

Combination of these equations with Equation (39) yields

_l1
R (ql)

c 2 2
ql -q2

¢12 _f_ S (q2)
= c 2 2 (43)

ql -q2

2
c (ql 2 - 1) (1 -q22)

A preferable form for these equations is the following in which a parameter

u is introduced which completes the separation of the variables:

d ql d q2

R - S - du (44)

dt =_ c (ql 2 - q22) du (45)
J5

d_a cz r 1 1
= + 2 Jdu

eJ-_ L ql2 _ 1 1 - q2
(46)

From Equation (44), which leads to elliptic integrals of the first kind, ql

and q2 turn out to be expressible as elliptic functions of u. Using these expressions

for ql and q2 in Equations (45) and (46), it is then possible to obtain t and _ as

functions of u. The integration of Equations (45) and (46) involves elliptic integrals\
of the second and third kinds.

The form of solution of Equation (44) depends on the nature of the roots of

the quartic expressions R 2 and S2. These roots are uniquely determined by the

14
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three dynamical constants h, _ and ft. It is shown in Reference 6 that if

h < 0, R 2 must have four real roots, two of which exceed unity and the other

two lie in the interval (± 1). Further, R 2 is positive between the largest roots

and also between the smallest. Since, however, ql must exceed unity, it

follows that ql is constrained between the largest roots. Thus, if the roots of
,)

R" in order of decreasing mag"aitude are denoted by r 1, r 2, r3, r 4 it may be
said that

-1 < r 4 < r 3 < 1 < r 2 < ql < rl (47)

This conclusion may be stated a little differently: the bounds r 1 and r 2 on ql

represent two ellipsoids (the larger corresponding to rl) which bound the region

in space in which the vehicle may move.

The corresponding results for the quartic S2 are more complicated: none

of the roots exceed unity and at least two lie in the interval (± 1). The other two

may also lie in this interval, may be real and both less than -1, or may be com-

plex. The quartic is positive between the two largest roots and between the two

smallest, if they are real. Since q2 must lie in the interval (± 1) it follows that

the orbit is constrained between the two largest roots or between the two smallest

if they also lie in the (± 1) interval. If all four roots of S2 are in (+ 1), knowledge

of the position of one point of the orbit specifies whether q2 is constrained between

the largest or the smallest roots; transitions from one band to the other cannot

occur, since if S2 becomes negative, _t2 becomes imaginary. The roots of S2

in the interval (+1) correspond to hyperboloids bounding the motion in space.

Summarizing the above results for negative energy, two possibilities for

bounds on the orbit occur. These are shown in Figures 11 and TITwhere the shaded

areas are regions in which motion may occur.

15
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-1< r4< r3< 1< r2< ql< r 1

Io .either

-1< s2 <q2< sl< If or

I Figure II

1

s3 ' s4 < - 1

s3 ' s 4 complex

I
I

I

s2

r 2

s 1

I

,I

I
I

I

1< s4< q2 < s3< s2< sl< 1

-1< s4< s3< s2< q2 < sl< 1

-i< r4< r3< i< r2< ql < rI

Figure Ill
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If one thinks of h, _. and fl, which.determine all the roots of R 2 and S2 as

being three dynamical specifications of a two fixed center orbit, it is clear that

•any remaining specifications must not violate the bounds on the region in which

the motion can occur. That is, these bounds impose constraints on any further

specifications. Actually, not even h, o and fl can be arbitrarily selected: they

must lead to roots of R 2 satisfying Equation (47) and roots of S2 satisfying one

or the other of the following:

(a)

(b)

-l<s2_sl_landeither s3, s 4 < 1 or s3, s 4 complex

-1 < s4_ s3< s2< Sl<. 1

(48)

If the energy is positive, it may be shown that R 2 has one root, say r 1 ex-

ceeding unity and is positive for ql exceeding r 1. The other roots are all less

than 1. The quartic S2 has two roots s 3 < s 2 in the interval (±1), and one on each

side of this interval. It is positive for s 3 < q2 < s2" Thus in this case the motion

must take place in the unbounded region shown in Figure IV.

Figure IV

17
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As noted above, ql and q2 are expressible in terms of elliptic functions

of u. The particular elliptic function occurring depends on the nature of the roots.

In all cases, see Reference 6,

qi =

A if (c_ i (u +_i))+B i

Cif (_i (u +fli ) )- 1

(49)

The A i, B i, _i are constants depending only on the roots and hence on h, _ and

ft. The constants fli depend on h, a and fi as well as whatever additional spec-

ifications are made to select a particular orbit. For ql' the function f is an sn

or dn function according as h is negative or positive. For q2' h < o, f is an

sn or cn function according as all four or only two of the roots are real and if

h > o, f is a (in function. It is evident, of course, that ql and q2 are individually

periodic in the variable u. The periods of ql and q2 are, however, in general

non-commensurable, so that the motion in space of the vehicle will, in general, be

nonperiodic. The quarter periods of ql and q2 are usually denoted by K 1 and K2,

respectively, and it may be shown that these quarter periods depend only on the

roots of R 2 and S2, respectively, and hence only on h, _ and ft. From the way

in which the f_i occur in Equation (49), it is evident that they represent a phase.

In fact, it is assumed in Equation (49) that u = o corresponds to some point on

the orbit, say the initial point, and the fli represent the variation in u required

to get from this point to one of the extreme values of qi - that is, to a point of

tangency with one of the bounding ellipsoids for ql' and with one of the bounding

hyperboloids for q2"

The integration of the equations for time and _ leads in all cases to the

following forms (consult Reference 6)

t = (n 1 - n2)u + Fl(U ) + F 2(u) (50)

_o= (m I + m2) u + Gl(U ) + G2(u) (51)

where n 1 and m 1 are constants depending on the roots of R 2, and n2 and m 2 depend

18
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on thc roots of S'. For negative h, the functions Fl(u ) and Gl(u ) are

periodic functions of u with period 2K1, while F2(u ) and G2(u ) are periodic

with _eriod 2K 2. For positive h, the functions F i and G i become logarithmic.

19



I
I

I

le
I

I
I

I
I

I
I

I

I
I

I

SECTION IV - DETERMINATION OF THE GENERATING FUNCTION

The differential equations for the generating function, Eqs. (39), may be

written

dWl __W __/2c

d ql b ql ql2-I

R

dW2 _ _W __2c

d q2 3 q2 1 - q22

S (52)

dW3 B W

d_ _

These are ordinary differential equations, and integration again leads to elliptic

integTals. Before carrying out the integration, however, some discussion of the

limits on the integrals is necessary. It will be recalled that the generating function

was to be a function of six variables.

W = W (ql' q2' _' PI' P2' P3 ) (53)

and the differentialequations (52) give only three of the six partial derivatives of

W. Now the dependence of W on ql' q2 and _ can be carried by the upper limits of

the integrals resulting from Eqs. (52). These upper limits should be simply ql'

q2' and _, respectively. Recalling further that the momenta Pi are supposed to

be constants, and noting that three independent constants h, (_and fialready are

explicitlyin Eq. (52), itis evident thatthese three constants or some three in-

dependent functions of them must be identifiedwith Pi" Itis convenient at present

to identify h, c_ and fl themselves with Pi and defer to a later stage in the develop-

ment any more complicated identification. If this is done, it now becomes obvious

that the lower limits On the integrals must be either functions of h, o_ and fi or

absolute constants. This is so first because W is a function only of ql' q2' ¢_

20
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and the Pi' and, since the integrals will be functions of their limits, only these

quantities and absolute constants may be included in the limits. Secondly, the

upper limits have already been taken as ql' q2' and ¢_, and recalling that the

partials of W with respect to ql' q2 and _ must be Pl' P2 and Pc0' no further

dependence of W on ql' q2 and co can be allowed without modifying the p's from

which the equations (52) for W were obtained in the first place. The only remain-

ing problem, then, is to select lower limits which depend only on h, cz and ft. For

the integral for W 1, the variable is ql which has bounds on its variation. The

bounds depend on h, a and fi, and since r I is a bound whether the energy is

positive or negative, it is a satisfactory lower limit. For W 2 the bounds vary

with the particular conditions of the problem. However, for orbits approaching

both Earth and Moon, the bound s 2 always occurs, and will be selected as the

lower limit. For W3, the situation is a little different. The variable is _0, and

reference to Eq. (43) shows that _0 has the sign of a and is thus monotone. Hence

any absolute constant is acceptable as a lower limit and 0 will be selected. 'The
0

generating function may now be written:

W (ql' q2' _0, h, _, fl) = W 1 (ql' h, _, _) + W 2 (q2' h, _, fl)+W 3 (_0, h, _

where W 3

..ql .q2

R S d q2
2 dql +_/2Cjs 2 i-q2

is integrable directly.

+ a_ (54)

It might be remarked at this stage that there is

an essential difference between this generating function and the corresponding

function for the Kepler problem. The upper limits in the integral occurring in

both generating functions may be regarded as the coordinates of a point on the orbit.

In the Kepler problem, the lower limits correspond to the perigee distance for the

radial integral and to zero for the two angle integrals. This may be regarded as a

point on any orbit, since the angles may just be measured from the perigee point.

In the two fixed center problem however, the lower limits rl, s 2 and 0 may be

regarded as a point only on a very special orbit -- namely, one which is simultane-

ously tangent to the ellipsoid r 1 and the hyperboloid s2, and this tangency must

occur in the x-y plane.

21



To complete the canonical transformation generated by W, the Pi will be

identified with h, _ and fl as follows:

Pl = Ph = h

I P2 = Pfl =_

The conjugate coordinates Qi

(55)

then become

2 q22 dq 2
b W c ql ql dql c }q2

I@ Q1 =Qh=_h - _ ._rl ' R j2 ,s 2 S

I 8 W e ,ql

I Q2 = Q_ = _ =-"J-2" ..rl

dql c q2 dq2

R +
s 2

(56)

Q3 = Q_ 5 w _/2 _ ql dql _J2 _ q2 dq2

=_c_ =- c 'irI (q} 1) R c ' : +_- 's2 (1-q )S

I

I

In differentiating the integrals in W there are really three terms for each integral:

one is the integral of the derivative of the integrand and the other two are obtained

by evaluating the integrand at the limits and multiplying by the derivatives of the

limits. The terms corresponding to the limits vanish, because the upper limits

are not functions of h, _ and fl, the integrands for the ql and q2 integrals vanish

at the lower limits, and the lower limit of the ¢p integral is an absolute constant.

I
I

I

It will be noted that all the integrals occurring in Eq. (56) have forms

identical with one or another of those occurring in Eqs. (44), (45) and (46) for

the determination of ql' q2' t and _ as _nctions of u. The only difference is that

in reference 6, where the integration of Eqs. (44), (45) and (46) is carried out

in all detail, the lower limit on u was taken as zero. Here the lower limits are

roots of R 2 and S2.
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Of the three Qi' Qfl has a relatively simple interpretation if one replaces dql

and dq2 by du in accordance with Eq. (44}. Then Qfl becomes

IT2 u(ql) u(q2) 1Qfl = - i du - i du
u(rl ) u(s2 } (57)

C

-- _ (u (rl) - u (s2))

since the upper limits correspond to a point on the orbit and therefore represent

the same value of u. Thus Qfl appears proportional to the variation in u associated

with a transit from tangency with a hyperboloid to tangencywith anellipso}d. Since

the orbit is not, in general, periodic this statement does not yet uniquely define

Qfl. To arrive at such a definition, it may be noted that in terms of the canonical

variables Pi and Qi the Hamiltonian becomes

H = h = Pl . (58)

so that the Hamilton equations in these variables are:

•/,i =p2--/_s--L=L= =o
and

therefore

(59)

(60)

Qot and Qfl are constants and

!

!

!

!

!I

!

Qh = t + const = t + C (61)

The values of h, _ and f_ may be obtained from a set of initial conditions. The

values of Q(_, Qfl and C may be obtained from the initial conditions also, pro-

vided it is agreed that the ql = rl and q2 = s2 are to be associated, say, with the

tangencies to the ellipsoid r 1 and the hyperboloid s 2 closest to the initial point.

Other identifications of ql = rl and q2 = s2 will lead to Q's differing from those

just defined bymultiples of the periods K 1 and K2.

23
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dq I

or

and

If one applies the same analysis to Qh and Qa as used for Q'_ (replacing

and dq2 by u), the following expressions are obtained:

[0 0 '1c 2 I q2 du (62)Qh =t+ _ i ql du- J
u(r 1) u(s 2)

I.O 2 0 2 ]C = _-2 i ql du - I q2 du (63)
•u(rl) "u(s2)

[j o 1Qo_ J2 (_ 0 d u _ d u (64)=- _ 2 - .J 2

u(rl) ql -,I u(s2) i -q2
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SECTION V - ACTION AND ANGLE VARIABLES

The action and angle variables are conventionally defined only

for conditionally periodic systems, which means that for the two fixed

center problemthe development can be made only for h < 0. The

action variables are defined in terms of the generating function W, as

follows :

Rdql_W dq 1 = _/2c 2
J1 = _ bq----1 q l -1

J2 = _ _ dq2 = _2c _ Sdq2

bq2 _ 1 - q:

(65)

J3 = t]2y _ d_ = 2 ?r(_
o

where the integral for J1 is taken over a complete cycle of variation

of ql - i.e. from r 1 to r 2 and back to r 1, while that for J2 is over a

complete cycle of J2 from s 1 to s 2 and back to s 1. These integrals

can, for the most part, be reduced to the forms already encountered

as follows :

,_ R d ql _. R 2 d qlJ1 = J2c 2 = ,,/2c 2 R

ql - I ql - i

2

_4KI i 2 N+bL'

= hq +--ql- _ - }_/2 c 'J0 c 2c 2 (q - 1)

(66)

]d_

25

i



I

I

!

ii

-I
Io

I

I

I

I

I

I

I

I

I

I

I

and its inverse is

J _. J1J2J 3 4c K1(nI-n2)

so that, finally

4 K.2 (n 1 - n2)

n1

4oK2(nl-_)

t+C _ n2Q_ ,.

Wl = 4 K 1 (n 1 - n2) + 4 c K 1 (n I - n2)

t+C + _ nl Q_

'w2= 4K2(n I -n 2) 4cK 2 (nI -n 2)

(t+ C) (m I +m2) + J'_ Q_ (nl.m 2 +m In2)

w3 = 2?7(nI - n2) 2 rrc (nI - n2)

are the angle variables.

28

m 1 +m 2

27r (nI - n2)

(nlm 2 -mln2)

2 y c (nl - n 2 )

i
2y

N

(74)

(75)



A complete cycle of variation ql corresponds to a variation in u of

4 K 1. Now the first term in this integral has the form of the dependence

of the time on ql' and, referring to Eq. (50) it is seen that the periodic

part F 1 will vanish and hence the contribution of the first term to the

integral is 8 h nlK 1. Similarly the last term has the form of the ql

part of the _ integral, Eq. (51), and will contribute - _ • 4m 1 K 1. The

term contributes just - _2 c 8 • 4 K 1. The only new integral to evalu-

ate is

r4K1 ql d u
-I 0

This integral, too, turns out to be expressible as a linear term in u

plus a periodic one, so that for the limits given, it contributes a term

_f2 (_+ _') _1" 4 K 1 where £1 is the coefficient of the linear term._ Thus,

fin ally,

(67)

J1 = 8hn 1K 1+ 4J2 (_+_') _1K1- 4_/2 c /_K 1 -4_m 1K 1 (68)

In an exactly similar fashion

J2 =-8hn 2K 2+ 4v/2. (p- _') _2K2 + 4_/2 c _K 2 - 4czm 2 K 2 (69)

To obtain the angle variables conjugate to the action variables, it is

necessary to recall that the original condition imposed on the Pi was only

that" they be constants. Identification of the Pi with h, el, and B is only one

possibility; any three independent functions of h, a, and fl would serve as

well and, in particular, it is now desirable to identify P. with J.. Now
1 1

the generating function W is given in Eq. (54) in terms of ql' q2' _' h, _, fl,

and r 1 and s 2. The roots r 1 and s 2 are, however, functions.of h, _ and

3. Now ff Eqs. (68) and (69) together with the third of Eqs. (65) be inverted

to express h, c_, and/] in terms of Jl' J2' and J3' it will be possible to

substitute for h, a', and 8 in W to obtain W as a function of ql' q2' _' Jl'

J2' and J3" It should be remarked that the inversion to obtain h, _, and B
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in terms of Jl' J2 and J3 is not an easy task since the coefficients n1, n2, £I'

_2' ml' m2 are very complicated functions of h, _ and _.. Nevertheless the

procedure is possible in principle and the angle variables w i conjugate to the

J's are given by the partial derivatives of the generating function W with re-

spect to the J's:

5W • (70)
I 5J.

'l

One may obtain expressions for the w i without actually performing the inversion,

by writing the derivatives of W with respect to Ji in terms of its derivatives with

respect to h, (_, and fl:

5W 5W 5h 5W 5(_ 5W bB

wi = 5J i - 5h 5J. + 5_ 5J i + 5fl 5J.1 1

5h 5_

(71)

from Eqs. (56) defining the variables conjugate to h, a and ft. Or D

Eq. (62) for Qh'

recalling

h 5__fl_+ Qc_ 5c_ (72)
w i = (t + C) bj i + Qfl 5Ji 5Ji

where C, Qa and Qfl are constants.

The derivatives of h, a and _ may be expressed in terms of the n's, m's,

's and K's occurring in Eqs. (68)and (69)by first obtaining the partials of.the

J's.with respect to h, a and flfrom Eqs. (65), and then inverting their Jacobian

matrix. The results of this calculationfor the Jacobian are

I 4 nI K1 -2_ r_ cK 1 -4mlKl_
j f JIJ2J3"_ =4m2 K21 (73)_-h fl _.J = -4n2K2 2_'cK2

0 0 217 __
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SECTION VI - CONCLUSION

To complete the solution of thc rcstricted problem, it is now necessary to

express the disturbing function H 2 in terms of the action and angle variables.

This is a formidable problem. The disturbing function is given in terms of ql'

q2' ¢p and their conjugate momenta in Eq. (34). The momenta are given in terms

of ql' q2' ¢p' h, _ and fl by Eqs. (39) so that H 2 may readily be written in

terms of these variables. Starting from the other end, the action variables J1

and J2 are given in terms of complicated functions of h, 5, and /3 _ Eqs. (68)

and (69) _ while J3 is just 2_r _ [ Eqs. (65)]. The angle variables w i are

given by Eq. (75) as linear functions of Qh' Q_' and Q/3 with coefficients which

are functions of h, (_, and fl similar to those occurring for Ji" And Qh' Qc_ '

and Q/3 are related to ql' q2' _' and h, _, and fl by Eqs. (56). Thus, the following

procedure would yield the information necessary to write H 2 (w i, Ji):

1. Express K 1, K2, £1' _2' nl' n2' ml' m2 as functions of .

h, 5, and ft.

.

.

.

.

J3

27r

Invert Eqs. (68) and (69) using the results of step 1 to obtain

h(Ji) and 13(Ji).

Express K 1, K 2, _1' _2' nl' n2' rot' m2 which are functions

of h, _ and flin terms of Ji"

Invert Eqs. (75)to obtain Qh = t + c, Q_ and Q_ as functions

of the aagle variables w i and-K 1, K 2, £i' £2' nl' n2' rot'

and m 2 .

Use step i to obtain Qh' Q_ ' and Qfl as functions of w i

and J.,
1
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6._ Invert Eqs. (56) to obtain ql _ q2' and _ as functions of

Qh' Q_' Q_' h, (_, and $.

7. In the expressions for ql' q2' and o obtained in step 6 '

replace Qh' Q_' and Q_ using step 5 and h, _, and

using step 2 to obtain ql' q2' and _ in terms of w i

and J..
1

In the disturbing function H 2 (ql' q2' _' h, _, fl), re-

place ql' q2' and _ from step 7 and h, (_, and .8 from

step 2 to obtain, finally, H 2 (wi, Ji).

e

Steps i, 2, and 6 are the difficult ones in this procedure. It is relatively

easy to write K1, K 2, _1' £2' nl' n2' ml' andre2 as functions of the roots of

the quartics and two intermediate parameters which are related to the roots of the

quartics by transcendental equations. The roots of the quartics are, of course,

functions of h, _, and 8, but it is not easy to write out these functions explicitly.

Thus, even step 1 is quite difficult, and to perform the inversion required in step

2 in closed form appears nearly impossible.

It should be remarked, however, that, at least for certain types of "orbits,

it should be possible to get fairly good approximations of these steps. For a lunar

orbit which starts from the earth, closely circles the moon and returns to the earth,

it may be shown that (_2/2c2 is very small. This is so because such an orbit has

very close approaches to the line of centers, and recalling that _ is the angular

momentum about the line of centers, it follows that _ must be small. If _ were

zero, two of the roots of the quartics would be ±1 and the other two are obtained

in terms of h and _ by solving quadratics [see Eqs. (40) and (41) ]. Now it is

possible to obtain the roots of the quartics for small _ in terms of those for zero

in a series of powers of _. Thus for small cx, it is easy to obtain fairly sLmp!e

approximate expressions for the roots in terms of h, (_, and ft. Further, it turns

out that the transcendental equations to be inverted for the intermediate parameters

are very well approximated by just two terms of an expansion. Thus, it is feasible,

for lunar orbits, to obtain a good approximation to stePS 1 and 2.
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The complete elliptic integrals

2 _ dql ,_
? ql du, _• 2 ' ? dql

ql - 1

and similar ones for q2' have forms very similar to those obtained by Vinti(8) in

his model for the oblate earth. Vinti used oblate spheroidal coordinates for his

model and the close connection between his development and that given in this

report for the two fixed center problem was firstpointed out by Pines (9) The

Vinti integrals have recently been evaluated approximately by Izsak(I0) using a

technique developed by Sommerfeld {II' 12) for evaluating certain contour integrals

of functions with branch points. The method is to expand the integrals in terms of

a quadratic function and evaluate the series of resulting integrals about contours

enclosing the roots of the quadratic. The values of the integrals so obtained are

explicitly in terms of the coefficientsof the quartics. For the method to be valid,

the expansion must converge over both the original and the finalcontours. This

condition is satisfiedfor Izsak's expansion of the Vinti integrals. However, none

of the obvious expansions for the two fixed center integrals converge over the final

contour.

The greatest difficulty in following the procedure for obtaining H 2 i's in step

6. Eqs. (56) relating Qh' Q_' and Qfl with ql' q2' and q_ are transcendental

equations and it is hard to say how well their inversion could be approximated by

some approximation procedure, such as the Lagrange inversion.theorem.

It should be remarked that it would be possible to write H 2 in terms of Qh'

Qa ' Qfi' h, c_, and flrather than in terms of w.1 and J..1 This is not done in the

Kepler problem because the relation between the original coordinates and time is

best achieved by a Fourier expansion in the mean anomaly rather than in time.

An expansion in time would involve far more complicated coefficients. Which set

of variables will turn out to be better for the two fixed center problem is hard to

predict at this stage.
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! DEFINITION OF SYMBOLS

m R Vehicle position vector

I r

v

! v

I f,g,f,g

Distance to vehicle

Velocity vector of vehicle

Speed of vehicle

Perturbation displacement vector

Coordinate functions

t

k

Mass parameter

Time

Time at which the natural end point is reached

Magnitude of thrust

Direction of thrust

I

I

I

I

I

I

!

I

m Mass of vehicle

A, T, _ Lagrange multipliers or adjoint variables

a Semi major axis

n Mean motion

d. n..fi.
1 ---1 ----I

0 Incremental eccentric anomaly

fl,f2,f3,f4 Functions of 0 defined by Eqs. (48)

[r}

[6(tF)]

{a}

[P}, {q}

[4]

Adjoint variables defined by Eq. (18)

State variables defined by Eq. (18)
i

Residual vector defined by Eq. (19)

Variational parameters

Defined by Eqs. (21), (22), (23)

Partial derivatives of state variables as defined by Eq. (25)

V
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[F_, [G], [J]

Subscripts

U

0

E

A, B

Superscripts

k

Partial derivatives of adjoint variables as defined by Eq. (26)

Defined by Eqs. (27), (28}, (29)

Unperturbed solution

Value at the initial time t
o

Value at the natural end point

Values corresponding to variational parameter set A or B

Value at the kth iteration
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REPUBLIC AVIATION CORPORATION

Farmingdale, L. I., New York

TWO-POINT BOUNDARY-VALUE PROBLEM

OF THE CALCULUS OF VARIATION

FOR OPTLMUM ORBITS

By Jack Richman

SUMMARY

This report contains a description for the solution of the two-point/

boundary-value problem of the calculus of variations for optimum orbits. ]
n

The method employed uses Lagrange multipliers and Pontryagin's
maximum principle to obtain the decision functions.

In addition, two differential correction schemes aredescribed. The

first scheme is a "method by forward integration," and the second is an
alternate "method by backward integration" that attempts to reduce the
difficulties that might be encountered in inverting a differential correction
matrix.

The optimum orbit is determined by a perturbation method similar to

that of Encke and accommodates hyperbolic as well as ellipticorbits. The

equations necessary for the generation of a digital-computer program are
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INTRODUCTION

The usual methods of solving the two-point boundary-value problem of

the calculus of variations involve the use of iterative gradient techniques. With
. these methods, the desired solution is reached only after making a great

number of incremental variations and examining the changes that these varia-
tions cause. As onemlght expect, the rate of convergence for this method is
very slow.

Another method of solving the two point boundary value problem of the

calculus of variations, which will be described in this report, is one where all

the decision functions and trajectories that are being used are extremals. This

method uses, in addition to the state variables Lagrange multipliers or

adjoint variables that play the key role in deciding the optimal direction of

thrust, time of thrust duration, etc. The adjoint variables also define the

natural end-point conditions by which the two-point boundary-value problem

can be terminated. This natural end point, in general, will not be the desired

end point. A differentialcorrection scheme provides the means of obtaining

another optimum trajectory the natural end poi/itof which will be closer to the

desired end point.

2
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In a Newtonian system, the equations of motion of a particle that is in the
gravitational field of N attracting bodies and is subject to other accelerations,

such as thrust, drag, oblateness, radiation pressure, etc., are given by

N _RvB K

:'-Z u +7, £j (i)
• -V B K 3

K=I r VB K j

The problem that will be considered here is one in which the vehicle is in the
gravitational field of only one body and is subjected to a variable thrust k. In
this case, Eq. (1) is reduced to

R k
i_ =-_ -_--+--_ m _T (2)

r

where T is a unit vector in the direction of thrust. The magnitude of the thrust
m

is taken to be proportional to the mass flow and is given by

k = - c,h (3)

The constant of proportionality c is related to the more commonly used constant

specific impulse Isp by

c = Ispg (4)

DERIVATION OF OPTIMIZATION EQUATIONS

In the derivation of the optimization equations, it will be assumed that the

vehicle can have two possible values of thrust, either k = kma x or k - kmi n. The

magnitudes of these two thrust values may differ with each stage.

Minimum-Fuel Condition

i The value of the integral to be minimized is given by

I = _tFdm = f tF-zhdt

I to so

(5)

3
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and the conclitLons of constraint are given by

V +/_R k T=0
-- 3 m-

r

-_v = o (6)

Because these conditions of constraint are satisfied at every point on the trajectory,
we may rewrite Eq. (5), without changing its value, as

_t _- • _RtF _n+k -(V+
r

o

m -T) +Z" _-V)+ff(lh + ) dt

__tF L('R, R, V, V, _, m, _, _2,, (7) dt
_ _ _$

"t
0

(7)

where X(t), _(t), and Or(t) are undetermined Lagrange multipliers that are chosen
so as to determine the optimum decision functions required to solve the problem.

Applying the Euler Lagrange equation
I,

I " d 5L 5L

_ -_ --o

to the state variables, results in the following set of equations:I

I

i

ux 3_ _. x_)
2 " .'-_ ÷ 5 __=o

r r

k----_ __ • T =o
m

4

(8)
o

(9)
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Equations (6) and (9) can be combined to form

_R k

_: =--= + R (10)
-- 3 5 --

r r

k= -cIh

_= k
--_ ),. T
m

In addition, the natural boundary conditions are

O

O

O

0

(11)

Because _ariations in the position and velocity at the end points are zero,

the first two expressions of Eq. (11) yield no additional information about the "

values of _, and .Z at the end points. The variation of mass at the final end
point, how'ever, is not zero, i.e., 6m (tF) _ 0 . Hence, the only way to satisfy
the third expression of Eq. (11) is to demand that

o-(tF) - 1 = 0 (12)

The only additional information that is necessary to completely define the extremal
is the determination of the optimum thrust vector and the duration of this thrust.

, For the determ_at_o_, of this decision" function," we make use of Pontryagin's
Maximum Principle, ( ' )which states that a necessary condition for an integral

of the form of Eq. (7) to be minimized is that the Hamfltonian be a maximum. The

Hamfltonian for this problem is given by
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H=A" V+T " V +_n

r -- o

(13)

r 3 - -- a .m - c" ]

For H to be a maximum, the unit thrust vector T

of__,or

T =--

-

must be in the direction

(14)

Therefore, the coefficient of k in Eq. (13), which is defined as the switch
function, becomes

S= ty
m c

(15)

The necessary conditions that must be placed on the magnitude of the thrust for
H to be a maximum are the following:

if S> 0 then k=k
max

if S< 0 then k--k
min

(isa)

Furthermore, when thrust is applied, it is desirable to make the switch function
as large as possible. This can be accomplished by allowing the mass to be as
small as permissible, which implies the obvious condition that any empty tanks
or other unnecessary weight be dropped as soon as possible.

' Minimum-Time Condition

In this case, the value of the integral to be minimized is given by

f. tF _tF [1 _RI= dtfJ + _-'(x'+ 3

t o to r
k k]m T) +Z._-_V)+o(fn+_) dt

(16)

Application of the Euler Lagrange equations and Pontryagin's Principle lead to
the exact same results as the minimum-fuel condition, with the exception of one

6
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of the natural-boundary conditions.
we now have

or

(tF) = 0

In place Of the third expression in Eq. (1i),

(17)

Therefore, for the "minimum-time" condition the natural end point occurs
when (_ = O.

ITERATION SCHEME

General Procedure

The problem is to generate a set of initial adjoint variables such that an
optimum orbit can be computed where the natural end point matches the desired
end point. (The end points are, of course, given by terminal values of the state
variables. } With initial values of the state variables specified and an estimate
for the initial values of the adjoint variables, an iterative method can be used to
solve this problem. Improved estimates for the initial values of the adjoint
variables can be obtained by computing the residuals or differences between the
values of the state variables at the desired end point and the natural end point
and then applying a differential correction matrix to these residuals. We define

the {r}, _. }, and [5(tF)] vectors as

and

{r] =

[5(t F) ]=

"x

Y

z

Y

2
"x (tF ) - xE

Y (tF ) - YE

z (tF ) - zE

(tF) - :_E

9 (tF) - _E

_ (tF) _E

m(tF) - mE. _

{_,]=

%

)'2

, (18)

(19)
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where the subscript E denotes the values of the state variables at the desired
end point.

• The Kth approximation to {>,(to) } is designated by {_,(K)(to)]. and it is
_(K+I)

desired to obtain an improved value of _,, (tF)] . The procedure is as

follows: using {k (K)(to)} in the integrationscheme, the position, velocity

and mass at time tF, as well as the residuals {5.(K)(tF)],are computed; and

the initialvalues of the adjoint variables are then changed so as to reduce the

residuals,

{k (K+I I(t_) = { _(K)(to)}+ (_, (Ix')(to) } (201

where {_)k(K)(to ) ] is to be found by using a differential correction matrix.

Methods for Obtaining the Differential Correction Matrix

Making use of Eqs. (141 and (18), the first two expressions of Eq. (10) can
be written as follows:

. (211

where

=3

,. =_

ql

q2

q3 "_"
k

= _x +k x
q4 - 3 m_

_z k z

q6 " r 3 +m 'k;I !

(22)

8
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3_ .__)
5

r

X ,'

r

3u@-__)
z

5
r

P6 = _Z

k I_I
P7 =--_

m

Taking the variations of Eq. (21) with respect to a set of parameters

{_} = (_1' _x2' ..... _7), we find that

! __.d [_] =[F ] [¢] +[G][A]
dt

I " _ d [A]=-[F]* [A]+ [J] [¢3
dt

m,

(23)

_4)

, 9
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ba
1

hotI

I0

ba 5 ba 6 b_ 7

I

(25)

bot 7



[A]: _-_ -:

-Skx(t) -_;_x(t) -5_x(t)

5ql 5a2 8a3 _4 5_5

-5),y(t)

5_ 1

bc_1

11

' 'bc_6 5_ 7

(26)
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m

0 0

0 0

0 0

+ 5 5
r r r

0

0

0

r

a_a_a_a_a_a_a_a_a___
5

r

r

0

r r r

0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0

0

0

-lok
x

m2X

-1_ z

m2X

0 0 0 0

(27)

.

t

m

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0

0 .

0

0

0

2
kX

k x

mX

In_ 3

0 0

0 0 0

0 0

mX3 mXa

2

i_-- mX3

-k_y_z k k_z 2

_ _ -_-r

0

,

(28)
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Method of Forward Integration. Two convenient sets of parameters to
work' with are the sets that consist of the initial values of the state variables

and adjoint variables, which are, respectively

_a} A = (r (to) }

and (29)'

{(_]B = (>'(to)}

Using these Sets of parameters, Eq. (24) can be integrated "forward"
simultaneously with equations of motion, using the initial values of [¢] and
[ A ] as given by

and EEoc,to,]o0
AB(to) ] = I

(30)

The differential corrections are obtained by solving the system of equations

{Ar (tF)} = [¢A(t F) I (Ar (to) _

(_k (tF)} = [AA(tF) ] {At (to) }

+ [%(t F) ] (_ k(to) }

+ [AB(tF) ] (_k(to) }

(31)

and, because

(_r(to)} =0 and _x(tF)}={5(tF) }

we find

{_,,to)}:[o,,t,)]-'{o,t_)} ,,_>

An interesting feature of this differential correction scheme is a tendency

for the inverse of the differential correction matrix [¢I_a(tF)]__ to become more

and more singular as the time arc increases. This tendency toward singularity
is a problem of utmost interest.

Method of Backward Integration. If the use of double-precision tech-
.niques fails to provide the required numerical accuracy for the inverse of the
matrix, an alternate method of generating the differential Correction matrix
can be used. This alternate scheme employs a method of '_ackward" inte-

gration to provide a differential correction matrix consisting of the sum of two
matrices, only one of which requires inversion to produce the differential

corrections, In this case, the two sets of parameters consist of the final

14
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values of tl/estate variables and adjoint variables, which are,

spectively

re-

and (33)

Using these sets of parameters, the variational Eq. (24) can be inte-
grated "backward." The procedure is as follows: the equations of motion are
integrated "forward" until the natural end point is reached; the residuals are

computed; and, then, Eq. (24), together with the equations of motion, are

simultaneously integrated 'q_ackward" starting at time t F and ending at time

t o, using for initial values of [_] and [A ] :

I-_B (tF) J __ t

and _ (34)

Thedifferential corrections are obtained by solving the equations

(A_,(to)) = _AA(to) _ {Ar (tF) _ + LAB(to)] (_,(tF) }

(35)

and, because, in this case,

{_r(to)} =0 and {_r(tF)} = {5(tF) }

solving Eq. (35) for [Ak (to)}, we find that

{&k(to)} = [[AA(to)]- [AB(t o) ] [_B(to)]-l[¢A(to)]_ {5(tF) } (36)

Coaver_ence of Iteration

Several difficulties are connected with the above iteration scheme, and

some of them .might be crucial enough to cause divergence of the iteration.
These difficulties might arise for the following reasons:

., I. In the variational equations, *-he variation of burning time
is not accounted for.

15
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The inversion of a matrix is required in both methods to
obtain the differential-correction matrix• Furthermore

this inversion becomes more involved since the residual

m(tF)-m E of the vector { 5(tF)) is unspecified and requires

additional computation,

The change _t F in the final time has not been taken into
account• However, this should be included by considering

the additional transversality condition which results in
{k}" {r} =0.

I DIGITA L PROGRAM

10

1 0

I

|

Trajectory Equations

The equations that completely define the trajectory have been described

previously. The order in which these equations are programmed for the

general case (with thrust) is as follows:

>0 k=k
max

<0 k=kmi n

k

C

a=k--_
2

m

d [¢]= IF] [¢_] + [G] [A]
dt

"d
•dt" [A]=- [FJ*[A] + [J][¢] (37)

I /_: _R k X- -_*_ J_l

+_+Atm =re(t) lh dt

a =_ (t) dt

16
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These equations are integrated until the natural end point is reached.__ At that
time, the residuals are computed and compared to a predetermined set of
maximum permissible values _¢ _.

If 5j(t F) < _j for all the residuals, then that trajectory is the solution

to the two-point boundary-value problem. If 5j(tF) > ej for any of the re-

siduals, then a differential correction is applied to the initial values of the
adjoint variables as described previously. If the alternate differential correction
scheme is used, then a 'Backward" integration is necessary before any correc-

tions can be applied.

Numerical Procedures

The differential equations of Eq. (37) can be integrated numerically with
a Runge-Kutta fourth-order method. To reduce any accumulation of error

that might result from a number of step-by-step integration, however, it is
convenient to write the equation of motion for the high thrust case in the form

The velocity and position vectors can be written as

(38b)

' where -Ru is the unperturbed solution and _ is the perturbation.

and

In this method, _u is taken as

k Ti cm _TiR=_ =-_-

_, #R+k[ ]_=__f. _ _T-T.--I
r

(39)

(40)

Eq. (40) is integrated numerically, and the solution to Eq. (39) is

R u = f R(ti) + gR (ti) + hT(ti)

--Ru= _- (ti)+ _ "R(ti)+i_T(ti)

(41)

I?



n where t

f=l

n
I

! t

g=t-t.
1

f=0

_=1

m - m i log m i -(m-mi)_- (t-ti) log mi}

|0

!

!

n

I-

.!

!

i

I

h = - c (log m - log mi)

m=m i+(t-ti) rh

(the subscript i refers to values at time ti)

This perturbation method, or Encke scheme as it is commonly called,
will reduce inaccuracies occurring in numerical integration, provided that the

perturbation terms are small compared with the total solution. Whenever
these perturbations become too large, a rectification takes place, i.e., an
initialization occurs in which the values of the variable at time t now beoomes

the values of the variable at time ti. A rectification takes place whenever any
of the following conditions occur:

(position rectification)

I-_ I> eve I (velocity rectification) (42)

_2_T • T i > Cacc (acceleration rectification)

SOLLFr!ON OF EQUATIONS FOR THE COASTING STAGES

The solution of the equations of motion and the Euler Lagrange equations

can be derived in clQsed form for the coasting period. In the no thrust region
(k=0), the equation of motion reduces to

_R = ---_ (Kepler problem) (.43)
r

18
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The two-body orbit that results from the solution of Eq. (43) with the initial
conditions

_R(ti) ,--_Ri

R (t_)--Ri

can be written as a linear combination of R i and _Ri as

R = fRi+ g_Ri

R' fRi+_R i

The coefficients f, g, f, and g are obtained as follows:

conditions by the set of elements

! 2
a= rii}'-

!

|
1/2

u

n - a3/2
(elliptic)

(44)

(45)

we represent the initial

(46)

!
'!I

!

I

I

I

(hyperbolic)

This results in the following Kepler's equation

r i d i
n(t-ti) =O-sinO+_- sinO+-- (1-cosO) (elliptic)

r i d_
n(t - ti) =siah e- e- -_- sinh 0 +--:--(cosh e-l) (hyperbolic)

(47)

where O(t) is the incremental eccentric anomaly E-El; the functions fl' f2

f3' f4 are defined as

!

19
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f1(O) = O - sin 0

f2 (_ = 1 - COS 0

f3 = sin 0 = O- fl(O)

f4 : co_0: 1 - f2(_

f1(0) = sinh 0 - 0

f2(O) = cosh O- 1

f3(O)= sinh O= 0 + fl(O)

f4(O) = cosh O= 1 + f2(O)

(elliptic)

(hyperbolic)

(48)

and the solution of the two-body problem for both elliptic and hyperbolic orbits
is given by .

1 fl + (tg = - _-- - ti)

__ = f2+ ri di1_Tf4+_

_=- Fi _f3

f3

(49)

- r f2 +I

ri

n (t -ti)= fl +_-[ f3

d°

1
+

For the non-thrust case, we also can solve for [_, ] in closed form. The
following is a derivation leading to this closed-form solution: the differential

equation for the adjoint variables are written as

__dm Ix } : - [F]*[; ] (50)

2O



where[F] is defined by Eq. (27);

d
d-i- [¢] = [ F] [¢ ]

the variational equation for [ _ ] reduces to

(51)

taking the transpose of Eq. (50) and postmultiplying by [ @], yields

dt {_ }* [_] : - {_' }* IF] [_] (52)

I premultiplying Zq. (51)by {k }* yields
P

[k}* d [¢]: {X}*EF] [_]io
comparing Eqs. (52) and (53), we see that

I
" {x}* d _{k}*[_] + [_]: o

| o_

i

(53)

• Eq, (54)states that

•where tK
results in

(54)

{k }*[¢] is a constant and, therefore, can be written as

*

is any fixed time in the no-thrust interval;

. (55)

solving Eq. (55) for { k (t)],

{_,(t)j r'_*(t)]-'_-*= L" (t K) ] {k (t o } (56)

In the case where the set of parameters { c_ ] corresponds to a set of the state
variables { r}, the matrix [_] can be written as

[@A (t)]: [.A(t- tK) ] [_A (tK)] (57)

taking the transpose and then the inverse of Eq. (57), leads to

]-,:[<,,_ ]-, (58)
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and combining Eqs. (56) and (58), results in

(59)

which is the closed form solution of [ _L(t) }.
0

The elements of the __f_A(t- tTr)_,,_matrix are obtained by differentiating

the Kepler orbit elements with respect to R_(tK) and _ (tK). The elements of

_A K); _rp(t)
(t-t Pq = _rq(tK) , with p, q=l, .... , 7, are as follows:

bxi(t ) 2Lxi +3__ 3 Xoj- =fS.. [x i
_) _Xoj lj ro

-Xoi - it -tK) koi]

÷ r° r

ia_3°'(xi-x°i)[-3(t-tK)+gr i.i. (1-_)f3]
0

_ Z_L _(_i__oi)_oj
.

+ f2( + ) _ XiXoj
0 r o

bxi(t)

_kj(t K)
_Bxi +3 la[._¢ , [xi _Xoi _ (t .tK) _¢oi]

+ _ r r

(60)

2
+a._a

- _ Xoj_i-_koi) f2 f2 Xoi:koj
_r o

22



_i(t) ----'_I =f6"- 3 3 i

!I bxj(t K) _Xoj 15 r r°

r. _" r r

+r(x i -_koi)_:-] _-3 (t- tK) +g +_n (1-_f3j

I O. * _ (:ki- _oi) Xojf
r

r.i- r

' +

m.

I

!

bRi(t) b/(i

•,B:kj(tK) b_oj

r ro oi oj r 3 (£i-:koi)
O O

_Sij 3 i
r

r**

+ r(ki-#toi)-_ [-3(t-

r° r

(60 continued)

r "I

tK) +g+_n f3J

r-i" ]+r _,, )£ r a_.L_+___f4 ]+ a_3 f2 Xoj [Xi+ r(_i-±oi)'--7 _-_(_i oi ojL rO
r

r . lal.
o f- fx ±

* -7 ¢_i-_oi)Xoi -_ oi oj

where i, j=l, 2, 3 correspond to the x, y and z components and
d

x° -=x(tK).

ro r(t K)

I

I

I

r

The inverse,

- r(t)

[_A(t - tK)]-I, can be obtained from the above expression by replacing

t .=#

0-*

r'*

-t

0

r
o

r .,4 r •
o

X "* X
0

X 0 "-* X

I
I

I

This resulta in,

fl -fl

g-.-g

f ... -f

_-. f
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FOREWORD

This document is Part I of the Second Semiannual Report prepared by

Republic Aviation Corporation under NASA Contract No. NAS 8-2605. The

report will appear in slightly different format in "Progress Report No. 3 On

Studies In The Fields Of Space Flight And Guidance Theory, " issued by the

Aeroballistics Division of Marshall Space Flight Center.

This report was prepared by Dr. Mary Payne of the Applied Mathematics

Section of RepublicWs Research and Development Center. The author wishes to

express her appreciation for many helpful discussions with Dr. George Nomicos,
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J

J*
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J2
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L
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NOTATIONS

= origin of rotating coordinate system

= position vector from barycenter to center of the
rotating system

= the position vector of A relative to the earth

= position vector of the earth relative to the bar)'-
center at t = 0

= position vector of the earth relative the bary-
center, but rotated through an angle o,q"

I

= E - E

= Hamiltonian (Jacobi integral) for the restricted
problem

= difference between the restricted Hamiltonian
and the two-fixed-center Hamiltonian

= the part of J independent of o_, /_, and 7'

= the part of J that is a function of _, fl, and

= Hamiltonian equivalent to J* but written in terms
of two-fixed-center coordinates and momenta

= time dependent part of J*

= Hamiltonian of two-fixed-center problem

= length of position vector from earth to moon

= position vector from earth to moon

= position vector of the moon relative to the earth

in the rotating system

= velocity of moon with respect to the earth (_ X L_)

= G X L in the rotating system

= momentum canonically conjugate to R A
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I

--PA

R_1

R_E

R
-'dT]

--I

_RA

r 1

r 2

T

t

t_

),

0

_z

I

#

= momentum canonically conjugate to R A

= position vector relative to a point fixed in inertial
space e.g. barycenter

= position vector relative to the earth

= position vector relative to the moon

= position vector relative to A in the rotating system

= position vector relative to the earth in the rotating
system

= position vector relative to the moon in the rotating
system

= position vector from barycenter to earth

= position vector from barycenter to moon

= position vector relative to A in the rotating system
for the two-fixed-center problem

= position vector relative to point at A

= length of position vector relative to earth

= length of position vector relative to moon

= a specific period of time

= time variable

= constant coefficient of L in composition of A

= constant coefficient of f, in composition of A

= constant coefficient of L in composition of A

= the angle of rotation of the coordinate system

about the barycenter after a time T

= gravitational constant of the earth

= gravitational constant of the moon

= angular velocity vector of the moon about the earth
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grad V

= the magnitude of angular velocity

= gradient with respect to the components of V taken
as coordinates

Subscripts

B

O°

= vector relative to the barycenter

= initial value

Superscript

dot over quantity = firsttotaltime derivative

2 dots over quantity = second totaltime derivative
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' _F, ' T _" '_ _ _REPUBLIC _\,,.T.O., CC_-_: O=K4.TION

Farmin_dale, L.!., New York

"" "{- ' ": " tile.-_pp. o;...n_on of Restricted _roolen]

by _.,e T_vo-Fflwed C_nter Problem

By :,,iary Payne

$U M).LAI%Y

in this report, a _er_n_rbatio._ theory of tltet_vo-fiA'ed-center problem

l_aalng to.an approxLnation for t.t_restric_ed-t_n'ee-body problem Jis developed.

It makes use of a ge,=eralizatlon of tke ntethod developed at MSFC by Sckulz-

Arenstorff, Davidso::, :._:dS._rli.:;.<i) The d_riv_tions are carried out ina

coordir.ate system rou_tin_ about .'-;: _ccelerated o."_Y,._:_, and the generalization

consists of the selection of tkis ori_ !n in suck a way as to :ui'_imize the effects

of the non-integrable ter-ns in tlte>_rnlrbation equations. The results of some

numerical calcu!atio ns are presen t_d. .__£

The equations of motion for a vehicle moving in the gravitational fields

of the earth and moon are:

.. _Ri , R.__
R = - _ 3 - s (i)

r I r2



I

I
iJl

i ,11

I

I

I

I
I

I
I

I

v:here RI, R.2, and R are the _._osXon vectors of the vehicle referred to the

earth, the moon, stud a point fixed in incr_i'..l .<)ace, respectively. Lower cas'e

letters denote t_,e magn_itude of h-.e corre<;ondinz vectors. In this report it
\vill be assumed that the earth _ -'_ are _-ov_,_._,._, -:.o_n ...... in circles, under their

mutual sravitationnl ........... tkeir This prob-
lem is the restricted thrce-bodv x',J_len"., :.::a tkc fixed point may be taken to
be the center of mass of t.t_:"" c_-,tk _.:.! the .n<,._... .it: _.>,..n'oximation.. to the solu-
tion of the restricted etch!c/,-, \vii[ ,)e so_.,47_ i= terms o. tke ]_lown solution(`)) to
the Eulcr proo_'em _ ...... -" -:'_'-'u. r_.o _;;<_a c_.:_:'o oz ._........... .... ..__._" i.:_' _._,..uu v'i!l, hl many
respects, follow closely tltat dcvc:o ;.od bv S3?.:i: -.:rcnstorff, D_vidson, and
Sperting. (_) Im tkeir proccdur% :::_ :)robi_ :.: is tr..::_fo:',::_.d :o a coordinate
system rotatin_ about the center of r:.=ss. L- "is l'oLati2g system, tl_e Euler
!)roblem is taken as the basis of a per_urb._t!on tkeorv. Using tke initial con-
ditions of the E,aler problem as a set of chnonical variables, it is shown that (2)

R 0 = - grad J_- P0
and . (2)

Po - grad _0 J_ '

where __R0 is the initial position vector in the roL£:'j sy_te:n, -P0 is the momen-

tum vector conjugate to R G, and J_. is the differs.nee b,:r, vccn ti_e Itamiltonian for

the restricted prob!e:n (Jacobi integral) and th:.t for tke Euler problem, and is

given by

The solution of the restricted prcb!<:n_ is given i-z terms of an osculating two-
fixed center problem \vith varying i_itial conditions, if J_ were zero, the

equation_ for R 0 and --P0 could b_ h:tcgrated directly. In ti_e Schulz-Arenstorff

theory, J_ does not vanish and, in fact, contributes appreciably to the vari-

ation of R 0:4_d P0 if the time intcrv:d over which the integration extends is too

large, or if eitker ti_ .... _, 'c.,_ _., o_." the :noon are approached closely by the vehicle
during this time {....... _,_

It is the purpose of tkis report to show th-_.t tke effect of J:'->:-can be reduced

the earth and moon. L_ the co,rse of this dev_._p:::e::: _hc d_tails of the Schulz-

Arenstorff method will be _iven, a:.d the coordhu_t_:s for a center of rotation will
be determined so that J_ and its first time d_;rivative vanish initially,
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PI-IELI._IL\ARY CONSiDF.XA.TIONS

Since the two-fixed center Frc%lcm will be _:_.e(l::s the basis of a pertur-

bation themT, it is necessary that ti:a-ea=.'thand tke n=oon be fixed in the ro-

tating coordinate system. Tkls in=plies tk_,t_Z<cori_gin of this rotatin_ system

must be fixed relative to tke eartk and the mcc;-.. Tke most _eneral of such

points will rotate about the " _ _ " " witk " '......:....oa:.-c_.,_-r, =;:_. ---o-,-_- velocity of the earth and

the moon. The radius vector i_""_om ti:ebarycenter _o d_e origin of the rotating

system can be expressed as

where L and L are ti=e position und \-_locltv \cc_ors, respc.ctiw=ly, of the moon
relative to the .... incal _n non-r,Jt:.tf:<4coorc!in_ztc <,,_tcn:, and ._ is the ang_flar

velocity of the moon abouL the ca:'th. Fro::: ""_z,cdcfl;',!Lion of _._ and _L iL is ap-

p&rel]t tha_ bo_]] voctol's 2_rc...:._.., [t..tCtioY.._ of LI.F,O. _ • "_ .... " .... '........ n,olc, L and L

;ire corlst3Jlt "_., .... ill t_',e ' "" " :.,'St¢'2t _'.!'d r- iS\cc.o,= ro.:,-::._ . .. eo::sta:-t in both the

inertial frame .tnd the rotati:t_4' s,,st_.::. Titus, the i'equlrc,mcp.t that tkc poh_t.
A be fixed reh,.tive to the ea-,:u_ "- Lltc moo:, ; .... _ ." that c_: :',..W,.c_ alld "/ &l'_[_ i i_[ ,,.,,

numerical constants. Tke const:c': _ maybe chosen arbitrarily, for the point
A is used to deternzine an axis of ....... _,_ .... on oriu:tted in the _" direction, and all

points with the same _ and )' ,.,,ill lie on the same axis independently of 3. Thus,

may be takc_: as zero without Ios_ of _e,.e.,,...... -,-'_;-L,", and it will no lo-ger., appear

in the forn=ulation. Referring to Figure 1, it is seen that R, RI, R 2, L, and

_RA, the position vector of the vehicle relative to A, satisfy" the following re-

lations:

1

R - : , L (5)
E # ,_ --

i-
-Phi: , L (o)

- k2 :h (7)

/ _t I

= - -_-- L - Y L (S)
A 1 E -- --± _'- e-"/ -- --



!
[-

ii I

,!

!

it

t

,!

!

!

!

|
!

!

|

First, it is necessary to eliminate _ f_on t Eq. (l) a_.-d obtah_ the equations of

motion in terms of P--_A' RI' and _2" To do this, one may differentiate Eq. (10)

t_vioe with respect to time:

, , • • . ° . . °

R_ = R__x _, c/_L - ", _L (ii)

.Now, the condition ti_t tZc eart" and moon _.t-.c\¢ in tittles ta_der their mutual

gravitational art raetion means that

a nd

_ ,_ x L

• • T

' - (12)L = ._qx_n = -<_- _ ) :_

Differentiation of Eq. (12) (with ' = O, as L kas co:_stant magnitude), enables
• us to write Eq. (11) as

o , • •

_c - L'.
R = R, ._ _ L - 7 L , (13)

.<

and the equations of motion (1) become

• . R 1 Ro
-- --_ f/ -

= - _ + (o: L - "Y L) (14)-RA _ 3 _ 3 ,_ -- -- •
r I r. 2 _.

It should be noted that, at this stt<ge, the coorcit:a-e _y._tcn-. a_soeiat_:d with A

is an acce!e_'ated syste:c_ since t.:e origin has vrAfo::n circul:.:" ::_otion. It is,

however, not a rotati:tj syste::" yet - that is, tlte coordinate o-xes remain parallel

to the inertial axes at the baryeentce.

The next step is to transform to rotatin Z coordinates about A. The vectors

in this system will be denoted by ba:'s, and the equatio,'ts of motion become

(15)

It should be noted tlmt, in this ro[atir_g coordir_te _ysuzm, the earth and the moon

are fixed, with positio__n vector L of the moon re,_,_:ve to the earth as a constant

vector. The vector L does not represent the veloclt-y of the p,_oon (which is zero),
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but is a vector mumall5 .... _ "; .... and ¢_peI:,enc,c .... to "_. =, and satisfyh_g Eq. (16) with

bars over the vectors. As the rotati..:S system has angular velocity ,Q , it follows

of course, c.at 0 and Q are men.c-:.

A constant of :-'_otion for the p_-oble:-n in the ..... ,;,-_,". o_ .... o system may now be

obtained by _ * " .....Gootm_ Eq. (15) with i:t, and noting t,:at the earth and the moon are
fixed in this system, so tkat --_

-& _ _t

R4 " = :_ = >2--%)=1 . (16)

_L .) -5" -t __ _L

__]3_ g . _ c' - ., -• - ' = - - (17).%. dt \ "2 "--' o o
I'. I'.)

T hu s,

7

as L and L are constant vectors. Denoting tke constant of motion by J:

-)
• _ / / m 2

- , - ' - : x (is)--._ r I r 2 3 A" L - 7R A" "_

It may now be si'_ox_ that, ff the vector

| __ -
= __ (_X_A--. A (19)

!

I

m

is regarded as the :uomenran_ conjugate to R,, die integval J of tke :notion be-

comes the Hamihonian. To prove this, substitute for RA, using Eq. (19), in
Eq. (18):

9 , 2

" =" /_A L ->:-,\_xg = a <.---PA -_ XRA/ r 1 r 2 .3 -. --/ _
x_

u

.L h

(20)

I

I 5
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and PA are conjugate vectors, H_mihon's equations,

_t3A = _adp__. j :P_- .q .__5_ , (21)

_A = - grad_
-A

/ /_ ] £
• *- It : {] / --

J =_ra _ .r. i" :: .3 =
(22)

must be satisfied. It is evident flat Zc:. (21) is idc=t;cai x',iti_ Eq. (19), definimJ
-% . --

the relation be_veen " _ ' _- tkexe_ocit.. R L :=::_; :::o::_,_ntt:::: -..D_ con_ug=_t_. Lo _RA. Now,

it will be shown that Eq. ('22) ruduc_-s to t,te _quations of motion (i5) in the ro-

tating system. First,

_ _ grad r (23)
grad _A r i I'_- _A i

±

But,

r 1 : R 1 • R • (24)_1 '

he nee,

2 ri grad
-A

O

d_ _= grit r
, l

--21

.)

_- -- v .21g.r._d _, _¢-<a _E -
--.a A

-- 0 --

: R, _ "- " _A.

: .° __ - -'_ -_E

• • rso that, fmaA},

gradR A_. r! r !

and

grad _ r i 3
-A r I

2_

i _E):k- i

(25)

(26)
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Similarly,

arad_ -:- =
-A r° 3

-- i'5

so that Eq. (22) .nay bc written a_

r _ t 77

& --

Now, from Eq. (i0),

-PA = R. - o x l{ k

7- m

L

(27)

(2S)

(29)

and use of this ±'clarion for -.-_P' ard 2o.. (19) for _PA in Ec.. (26) .yields

.?

<

"7-..

a _ -7 i___ _=

- (30)

Finally, ff the _O x i__lA on tke !eft is trars,_o_:d, to C:e _'i:;ht hand side of Eq.

(30), it becomes identical wid-_ ti:e equations oz motion (15) in d_e rotating sys-
te Ill.

RELkTION BETWEEN TIlE T%VO-FIXKD CENTER PROBLEM

AND Tile .,-_FR_CT_D P={_.E.",,:

A Hamiltonian, J, ires now Leen obtained for the restricted problem in a

rotating coordinate system with tZe origin at A:

J = a r I ro " .4, o ,.Y A" _L - 7 ' A" --Lj,
(3i)

with

-T"

A = &L + 7L (32)
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referred to the baryeenter of eartk and moon, "and

-7."

= -1-1-RA+ _0 × "_A (33)

Tke development _o far diYers _ii<i::i/ fro.:: ::::t_ o. ichalz-Ar_n_torff, Davidson,

and Sperlir._ (1)"" in two re<_,,ct_: it i:.:_ be_.: ..... out _:.:.. - .. .
Cf_- .__L. t,ti'eo tiiiilOllSlOnS in-

stead of _vo, and the c_,iter of l[ici'_lt.tili_ cOo2Cii_.tc _I,'StOIII iS &L A instead of

the barycenter. Folio'ai.:6 tlt_.ir d_.v_i_.pp.:_nt, a soh.tion of Eq. (31) in terms of
the solution of the _vo-fix_c c_;.t_.r proble.-_, is now oought. For the two-fixed

center problem, tke i-la:uihonlan is Siren by:

j, = .- ._),'" v : , (34)
-_ r I r 2

and the Iiami!ton equations are

R ' : grad , g' : P,'
-A _X -'_

and

! / 2-i.,,_

P ' = - grad J' : - . _, (35)-._ _, _
-._ r i r2

Denoting tlte solution of Lhe nvo-fLxcd center 2_ o;_;_:, sv primes and that for the
restricted problem witLout pri:nes, the solution sougkt is to have tke form

[_ > ' " o(0' "R 0, P0 t : R ""- ' - \_o (:)' -p t

and (36)

--><_0' 2o' P' t{- (t), Po(t) t-- \--() _ .

"'__.aa, the problem is reduced to finding the tinte dependence of the initial con-

ditions in ti:_ _olution of tit< r,\o-fb_ed center prob!en_, th:__t l)VOVi<e tke solution

of the restricted problem in tke _ar.te functional form as that of the _vo-fb_ed
center solution.

The theorem, mentio:ted h: tke in_'oduction, on the equations determining

the time variation of the initial conditions will nov: be given a precise statement.
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Theorem: If R (P,. T_ t) a:-2 i s ;l-i o t) constitute
-- --U' _-j' ----L,' ---0'

the solution of a o "o:_._.::-. ,--h..... i_a::.ilto::i.._:_ J _-_ __P)while

-- _(j, .)constitu:e the solution

Lal:]:.,_;:_a:; (i_z P withof a problem with T ._..... j, , i)

and

-_(Eo' £o' o

_P03_0,:Zo, :

-- -- 0 --Ij ' -- k)

=_- 0' , 6) =*-0 0

(37)

then E::s. (3C_ ar_- s:.tisi'!cd v,-th -:' (t) arm P_(t), de-
_t 0 --O

termk'cd by iLL. ctiu..tlo:.._

iS0(t) = ...._,gz .... p.
--U

_ 1

and (ss)

:P it) =-" ....." "_ "_ t)
--U

,,:heru

J G', £ ) = J (13 __P') - J [lS', 2 G0,_P0, t)

--U --d

suit of the gr_di_.nt operations, they are to bc replaced by

_R0(t ) and P0(t), r_spcctively.

This theorem has been proven byArenstorf (2) Ln an unpublished note and will

now be applied.

(Sg)

To obtain the differential equations for R0(t ) and P0(t), J- must be

written in terms of -PA'_ and ' associated with the two-fSxed outer problem.
That is,

J=_ (_i_' 29 -a'(_. ' -_A)

-, ' __L_U_' Ca •5 . y _RA ,_._ "_£A .3---- • S,t -'-
(40)

where J (_--'A' _._ ) is obtah-_ed i,rom Eq. (31) by replach_g _ and -PA by the
--/ /

correspondhG primed qu-_ntities, and J'_A' -PA ) is given bv Eq. (2,4).

It is now necessary to obtai,u J* by expressing J- m t_rms of the initial
conditions of the tv:o-fLxcd center problem. This is very difficult to do ex-

actly, as the solution(5) of the two-fixed center problem is given in terms of

elliptic functions with the initial conditions entering not only in coefficients of
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the;so functions but also m L_._ .......... _.

fixed center problem is a traP.sc_21:ntal function of the htitial conditions.

approxi2uate solution is, however, obmLnab!e bv expa.udi2,.g J- as a power
series in time:

-L .ut

J=J (0) + J (O)t - j(%

= J_ (0)-J _(u)t v (0)

"fk c r_:oPu, the solution of the two-

An

t-
.) • o °

9

t-

° ° .

(4_)

Using Eq. (40), the first tiin_ dc:ivative of _ :_

-- _ - _' _ -" - ' -A" - co, . L). (42)J =-._ • R' ,<_o __ ._A +_ Ca_ T _TR A:-:A :-A -" +--.4. 3

I

I

t

i
i

|

I
I

i|

I O

+I

Now, Eq. (_2) conu2h".s thn¢ derivatives o£ l l, ard PA' which may be

eliminated by means of the H_mihon equations (35) for the tuo-ftxed

center problem:

's: - 2--P2 x-P2- 2_'×< :3 3 )- .--PA(_,-),__L)._
FI I',__ _.

(43)
.

The first term in this equation ........__+_.'-_- _+:',+'.___.._++_+._ of 7 and J at t=0 yields

and

D(o)= .7+/o)= - .",•Qo
-- ,++

x ( 3 3 ) ".3 0 (ai-_vL)-- --

rio r20 "+

(45)

Setting

82o -"gl = - "_ _ AO (46)

and

,i _pl __

J'2 - .3

-- _ 0 u _Ro0
(aT=-TL) --t.._.X , o t "D; 3)

" rio r20

/ "T- -

u--' _). -(aL_L) .-...,
.8 2.4.0 -- _

(47)

so ::.at

J* = J1 + J2 "

I
10
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Application of the Arenstorf theorem, now yields

and

RA0' = - gradp,_A0 Z ..... .2 x £.Z0;_ ' - _,.=-,d__A0 J2 (48)

/ = -- ccFa,_,_PA0 ° _'

as the dff'fe ....... _....._ .... _t cc'c, at:ons _F- :.:e ,ar.:v.i_.: u_ t.:_. u:,o-fk<_..d center initial con-

ditions, which must Lc incluc:_,d _- tkc t:. o-f2<_,d cc:ue:- solution in order that it

l]laybecollic tile SOlUtiOl] Oi"t_lcfcSt,,C_, :)FCJ/L'.<].

!fJ o v,cr_, zc:'o, Zqs. (-i_ ;.:u! (4_:, v.'c..:kl-::t_j-'at_. Lun:_.diatcly. They

would sin_])iy say that R, . and P, rot:n_, el .... ,,i=c v,itl_ _..%_:ar v_locity .q .
--.'<0 ---'.O

Tkat is, in Cu, ro=.LL G .%=,teL: C._' .-oiutco:. o; .:._ :=._t:-_-i_.ci p:'olb!_,n ztt time

T \vou-d 5e Aivcn by the =olt:Co:, of Ctc tv, o-:i.:_.d c.,:::c: _.'oi.l_..n at th:_.e T,

with k:hi:.! co:tditions chit.kind :'.'o::". tees< _,..he _'_,strict_.d p:'obk':n Lv a

cloel_vis,: rota:io:: "dlFou_,lt F.' F L[_3t< the poi:n .i. }'or T=0, the rcst:'icted

and tv,o--b-cd cc.nc,:" p;'cl,l_.:t.s iu.vc the sar.:c i::i'i:.l co:-.di:ions and, h_.,noe,

have CX:(ct'y the san:_ solution.

Actually, o- course, j., <eta not vanls:, :_nci it is h_re that the selection

of the :)o'2<t -_ _.:ncrs. Every tcLn of g,_ htxohcs c.,:_!',,-r F,. or n which"" - -:_0 _%0'

depend o:_ the selection o: the zoL:t A, so tlt:'.t this pok:t sl-ould be selected so

as to :nh_i:aizc the co::t:'ibution of go to the v_,.ri_don of tlte h;itial conditions.

This could be don_- ±: \Lrio_ts v<,)s. Inasntt:clt us the position of the point A

depends on the: two p:.ran-._.tei's a and y, it is c\'id_.nt flat only tv,'o conditions

can be imposed on th_ selection of A. Several such conditions su._gest them-

selves immediately:

(i) Determine & and 7 so that h_ _._ t.te co.:staat t_zrm and tke

-coefficient of t vani_.k for the i:".i:ial values of ,_-_A,)' and _. 0"

(2) D_tcrmlne a and 7 so that J.; vanish for t=0, with initial

values of iv'-Au_ " and PA0"' and also ranis? at t:T, with the

rotated values of R_ 0 and P/ _ " ' .--A6 a_tcrn_'.:'_c_t b\ gl at time T

(3) DetermLne a and y so that th_ square of g,> is minimized

over t;,e time interval 0 to T, ,us ..... _.,g citi<_r the initial values

O.i" _'," :i;'.(] D / _'t, "r;-_,_'_'r,, 'f_""'O "" ...... ' ....... "_.... "_ ........... : '

t)5' Jl over the intc-'_'vat.

The first method ires the di_:_dva:ttage that tl:_ '.,:.ild/ty of the aporoxflnation

would deteriorate with time, and tl-ere is no _bvious way of c_tim.atLng the

duration of validity. The ot.n_,-" v,vo methods .....' ,=,c tnc disadvantage that, ff the

thne interval speckled, is too _or:g,' the ap_n'oxi:u.atio:_, wo'u_' o' not be valid, even

initially, and again, a criterion for "too iDn_" is missing. It was, therefore,

decided to try the first method, which would give some insight into the duration

of validity, and might very well produce results of practical value.

11
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_ m TDETER311X.-_,ION OF & AND 7

' In accordance with the conclusion of the last section, _ and T are to be de-

termined by the equations

• .(c_Z _vL) = c (5o)
AO

and

_R I
- - - o , "_±< _ '=- "_' _-_ (._L= 7L)=O, (5i)

"-_ R A0 ,. 3 3/ ;-) --_',J
rio r20 ~

so that the firsttwo terms in _,¢ pov,er series c::p:ms.on of J._ m Eq. (47)vanish.

Tileprimes have been omitted m Zcs. (50)and (51)bccu.use tee initialvalues of

--/ - / , .:,,:,.. • In,-1 ..... -";" ]']_ " "_ '"_ _",.3"'"R and P ._, lu._azce,._= _.._.u ....ra_.u_ .= fo: th_ restricted problem, are
-A0 --Ao " , -_ . . (.)the initial values of the r_stric:cci p:'o:;,em _:. u,c <re::storf theorem. -) Now,

_A0 and -PA0 depend on the se!ectioa of thL. point -,, so that, :or the determination
• , am: (51), they sl:ou!d b ' r_.)laced by the position andof (2 and y from Evs. (50) ' ' ,_ .

momentum of the v_;hiclcrelative to some point l:-c<;e..c.en_of A. A pal_ticularly

compact form _ obtah_.edfor tlleequations of a and 7 by replacing --PA0by --Pi0

and-RA0by _r]_0 or_"0'_sfollo,,,'_.First,_inoe*'tom_q.(19)

for any point A fixed relative to earth and moon, it follows that

_1o : glo + _ * rh0 (53)

Therefore since in the *''" _, rom_m= system the velocity of tile vehicle relative to the
earth, is the same as that relative to A (uoth are fixed points in the rotating system),

p :_ -_ L'% v IT) --T'_ \AO --i0 _ _-_"" _ _A0 _i0 J

/
,'_ -'7 U. --_,/ __

= -PlO - (cz _- _-'r- b T7 3 --L,

12
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on making use of Eqs. (8) and (12) _:....... "" •• _-_s, _ce t:.Ira term of F-q. (51) will be

proportional to

--£ -7 /

_mAO (a_E +;,_L ) --210 (a_ +'/_T.)- --

where the terms in e_y have cancied out.

Again using Eq. (S), the first term of Eq. (51) will involve

: -_I0"_ (_z -_ ":--7-) L - ?/---T L ,
,4.

and the second term will be propoe_ionai to

xB2o= -_ _
!

(_
_ -._.

)K-r__ -_2o

so that Eq.

- L/ -- ,./_= I __-

=- riO (c_ _=_,) L -7' ._ L

(51) may now be written as follows:

,tl I --

_ [-(a+ _ r-)_ "L +g 'a- '' - -a #_ io - .---7 -Rio" L_
rio *

3 k ('_ : u --- - T) R • L -F--
• 'a:- " -20 - S

r./o ,

tl-- ,,1 -- "T ''! --

_.z_a_u_ o (&L =vL ) -----"
.o _._--i0 - -- - .' /
A_

or, collecting terms in ce and 7:

= 0

13
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"- 7 / !
'J L./

,)")

r r20I0

/

=-7 -Pio"_ _

/

.3 ,
z_

V) .

--'-c, --go --

7 t_ 3 _" g

rio "20

i Pio"-L

!2 I,,
b --7-

#-.;/

-: i !
_io "L (---7-

rio r2 O

(5S)

=0

where use has been made of th_ fact th_:t

Usi_g Eq. (_) once more, one obtains for Eq. (50):

: I_io
.'7"

• (vE-yL -_(c---
'_' J 2 o ')

-7) -./-. z- (so)

:-a-i-_c_<_iO - _:_ _ )-_, 7 iO L ) =0

If Eqs. (56) and (O0) ::re solved for c and 7 , :z poL:t A is determined so that the
following procedure should give an :<)proxin".-.tion to tk_ restricted problem valid
for atflr, e fnteIwal v.'kose _ng_,, Ce :_.nds on the size; of J* and the rate of variation

--!

of _RI0 and -1P'0" The procedure is carried o_t fi_ the rot/itmg system as follows:

Modify the h:itialconditions of the restricted problem by a

cioci_vise ro_atlon _= _-s,_" _c T _'_b_"'_-.':"_._,..-'_r'_-_ . A , and solve
the two-flxed center problem \vitk these modiiied initial

o ....conditions. Then, (T) and _, _l_e,. ;)y the two-

fLxed center problem, should match !_A(T ) g'iven by the

restricted problem with unmodified k_iti_A conditions.

14
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APPLICATION OF THE METHOD

In order to carry out a nu:ncr:cul test o/ the ;n_dlod, use w:!s nlado of the

Republic interplaneuiry tra!_ctorypro_ran:, qh= i.:gut for tkis program requires

that initial condition_- Le giv_:_ in _. -_<_rdin_.t_ _..-t._.v, ,.ith its origin at the earth

and axes with fixed direction= in space.. TLo z-at<is points towards tke pole star,

the x,axis points to the ih'_t pol.tt <,:At'los, a:td titc v-axis is selected so tkat the

system is orthogona! a.tJ r-gl".t-k::nt:t.d. T}to )t.:pt.t -.:eL:des coordi',t::t.:s and ve-

locities of the w;klcle in tkis sa:.te <:stem. A." o>tion is available v,klcn fixes the

moon at any desirc.d point o:_ its orlxt ai.d co;ngu'_s a e.vo-fixed center problem

for this fixed position of ti:e n_oor. _:nd /lyon initial conc, itions. A set of initial

conditions is available v,'Mch yield_ ;. l.:nar trajectory (re/erred to, henceforth,

as the%ase case) with a moviitg talc,ant, starti:-_( :_e:_r t'.'.¢ earth, closely circling
the moon and-_,--_ .... " . ",_a ...... :_ to tke eact:t. "_!-,'us. _o test t:_: app!ication one could

modify the coordinates and velocities at varicu_ >cants on this base c'_se andcom-

pure a two-fixed center proble,?, fron: t.te m_,dlficd conditions to obtain a com-

parison, which should indicate the time intervals over which the approximation

fs useful for various portions of the trajectory.

The mcdifi_;ation of the i_itia! ............ _ ......... 4{ .... " sections[-'k),itll[i,-)i.¢ ti_Ji'_V_-ci :_l_ [',tO i] ......... -_

was carried out in a rotatin4 system, and i i._ now it,_ces=ary to trai',s%rm this
modification for use in the coordlna'tu svst_.::t of the _"-"" ";'_-_ ........ ¢=_.i ..... _...1% p!'o_r£_']l. To

see how this may be done, suppose for ti:e :noiuont t.:at the ooiltt .% is at the bary-

center, i.e., c_ and _. are both zero, and that tl:e =i:.._.l _::td rot:tin< s)stem.s are
coineidert at t = 0. It is evident, in this cas_. that tire two-fixed center orbit
obtained _'' initial " " ".iom tke co::ditio;ts. :r.odified of a cioc.<v,,ise rotation tl:rouzh an

angle @ about Pie buz-vce::ter, is exactly the _-:_:::e rciative to :l_e ear:!: and moon
as if the initial conditions had b_.e-1 uniuodified :.-:d tire earth ard iiloo:': had been

rotated countercloclavise through o at)ut the bar'.center. .Now. t,',e an%-ie @ is

_T, where T is the time at ,_-:,{c"- '_- comparison is to bc made. He:".ce, if the

earth, the moon, altd tke two-iix_d ¢_::ter o-'blt, corres:)ondinj to the modified
initial • _" _ ..... < "co,,( ..... J .... is ri:_:c>." tea:ted countei'cloclavise thi-ou_h a.* T, the earth and

moon will coincide with their positic/ts at th-nc T in t>o fixed systei_a, and the

point correspondi:,.j to time T on tke two-fixed center orbit is ti_e one to be com-

pared with the restricted prob!e:n carried out lit tke fflxed system. Moreover,

this counterclocb_visc rotation ju.-.t tzu_r.sforr.:._ tke tr,'o-fixed center problem,

with modified initial co..dltiolls _n.c _.:rth and :-noon in initial oositior, into that

with umnodifled initial _:onditions aizd earth ,:ha_"' moon in tr.elr......... i positions, i_-

fore, for c_ and - ' '_,"ao_.. zero, the comparison can be made, uslngthe interplan-

etary prog-ram by *'..... o-the m,LX'_*,_ con in its T posit_on and i'_fcri'h:_ the urm_o'dffied

initial conditions to the coordinate system centered at tire earth at time T. This

is indieatedin Fi_. '> wL_re the unprimed initial _;_,d,_,o,,_ are referred to the

earth at t = 0, and the primed initial conditions refer to the earth at t : T. The
initial conditions are fixed.

15



!
,|

!
ii1

.4 comment on the relation bev:,:c_n the momenttuu vector _B, conjugate td

]JB, and the velocl b recto:- =D' w.:e:-c 13is csed .t°n,mcate that the barycenter is

the ,-'c,-_ - . .......0*_o_n of me rolalh:g svstc:n, !,: it-ordor. " '"" -"" Re_.alnng tt_e definition of PA

in Eq, (19), it follows that

_-

P.. =..> - _._"xR_ , (61)

and hence ___-, is siu:_iv. , tl;c velocity vector in '--_:.c fixed system with its components
refc='aed to .:e htstant_,::cot:s rot.qt-:k( axes. Since it has been assmned that the

fixed mid ...... _'" " st'stc._v.s are col.,cld,ant at t = 0, it follows that

:1_ ._., (62)

where F:G _ in ,i:o :i;:dd -"_:c:'. t :_call :nat b:,.'sdenote rotating system) At• _d _ , .

th_ne TTif the r_., vector is ........ -_aotu_c. :.::._,4g._ " cou-:tcrclocMvise it-will becon_.c

the %'-{B\corer. But t.cas 1_ lust t::c ,:'a. _,oz_,x_ ..... _,._ has been used to translate
tqu two-fixed center 22 " "; .... " ".... n o ..... _.4c.: .:u:-._ th.: rota_:::g to the fixed system•

Titus, if tl:c bacycc::ter is :L_ ..='i,4in ,.f :it= z-orating system (i. e., c_ = y = 0),

the prescciption for the ar3,)ro.xi,n_._;ol-.." " is tlt<; Io,.,,'"-_a ,_.no.,-

(I) Let

- ------_, (7) - i0) )_E = _- E -

be the displacement of the earth in ti,,-ae T.

(63)

and

(2) Set

.

_ :a :a .- 'R'10 i0 -- --iu :--./ --

D' :. IiI_iO -- ,3 '

t;.,_ "- _ " rsince a _ _n_ ....o. of tlte ori;ir, wll 1 :tot affect '" x_,oe_D.

(3) ""',..x the ::;con .o',,r__ vl'), ti:at is in its position at time T relative to
the earth.

(4) So!re the ...._ao-_,.,c_..... centcc ;sroblc:n wit.: the moon (fixed at ==_(T))
and initial coi:,:i-tions t1_ and !G . t3 obtair :t -.);roximatio:: at time T to the

restricted " '" .... _' .............DIO.a,_:l!, ¢, l_I_ lhl_l_il ,_onv.,t,o.,a ._ &ha RIO and nt,:)on initially at L (0).

The :,:t=lysis f,)r a systum rotating about any point otitcr than the bary-

center is ca:'r:_c uat in a similar .......... ,', but ti:e algebra is more complicated.

The origin of tire rotating system is to be the point A, defined by Eq. (4), with

ce and 3' determined from E_is. (gS) and ((_0).

In Fig. 3, the vector A :,,,:d the original and modified initial conditions are

shown in the rotating bystem.

16
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.Again, itis seen <-:: " - . .... "".... ,.:o:-.,o-";\:_c_..:,a-:"i:r_._:on:,\vithprinted i:zitialcon-

ditio::sand unprin:ed positions o: c:.cth..nd.....::.i: :<.:-ucdto thatwith uPpri:ued

h-itialconditions and p_"Lucd is.,=:-:S.:e..:"C'::'.::.::':-nOon by a rigid rotatio:.:which

is the rotation pa:'to2 :::_tr:.::-_L.,:'.:::.-i..::c::_'.-.:::,j,:-_.:-o:ad,ugsystem into tl:efixed

syste.n. It:-:us:}sorc::ct::hc--_..:,:s.._,.er._:Lt .t.::::.-c:.:0barycenzer ]3,which

n:ay ]'e ..... as a :"-.tad:-......'...." ' " ':'e_a:'_eu. ...,..,...._,..._, :s =:: etc.-acre:ca point in inertial

space, so ::::_tmo:-e thx.:a rozati_.::s "oqt2c_d t5 :l-,.:-slo:'mback from t/:erotating

system to t::ofixed sS'ste:n, h: Fis. 4, the _y_:e.n ro_ating about A is shown at
t = Oand t=T.

It is ::o_'. _.-_$,r tO see that t:A? t23.:'.s:a'.toL "" " " " ",eta::ca to comp:ete the tx'ansforma-

tion :o axe_-: :-:o',u;:_ with A, but v.'-th 2i:.:c.d di:'_a.:iot:s, is a translation from A to A'.
Actually, this t,'a'_s_:.tion ;:cad not t.c _.,::sid_.'cd -.urtker because it is desired to
find :uodificaKon in the :niti-i conditio::_ relative to the earth rather than relative
tO '

Referring again to Fig. 3, it is _een :kat *'--,:.__,.'.....,.,"'cd .uositions of the earth
and the moon define a line p',ra!le: to t?at of the; ea_'th and moon at time T in the
fixed system. Thus, just as in the barycenter case,

-_E::0:a-t0
and (66)

p' _ P.

To obtain _ one :nay note ti:at A _ is ebb.el:ted by a rotation of E tt_oug'h _T
about A and that this _E is just the ncl;ative of a rotation of.A through o_T about
E. The recto," L, relative to E, is given by

/

' , .) h-, 7 = , (67)
--_ - ;__/_ -- :-._ - _

and the change in A E induced by a rotation of A E through -. T about E is given
by

AA E = (cz , ) (L__(T)- L (0))- 7(L__(T) - L(0)) (6a)

so that finally,

! •

Rio = _RI0 - (a ,) ([ (T) l L (0)) * :" ( [ (T) - L (0)). (69)
/

As before, P, which may now be rezarded as RI0 in the fixed svstem, is unmod-
ified. The [vo-fixed center prob:cm, with R_[0-and _10 as initial conditions with

Ee(_)L reIative :o tire earth, -..o.,d produce, at ume T,. a goodthe moon fixed at _" "_' ''_ '
approximation to t restricted .Ji'o_31e_l, \,urn :nmat condmon R10_ ana. R1_ __..and
the moon initially at L (0), provided T is sinai! enough so that the second and

higher order time derivatives of J2 produce a negligible effect.

17
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The parameters c_ and 7 nave been ceterminea for a lunar orbit with the •

following initial conditions:

= -37133. "_ "
xlO

-o_=o_. 667 x::l
i0

Zlo = -30_44.317 k;n

= 6ooooio. km/sec
Xio -0. -........
o

Yl0 = -2. 7369109 kin/seo

Zl0 = -1.0459904 kin/see

The distance of the vei_clefrom the earth is about 11.6 earth radii, and it has
a speed of about 3 km/s_C::'_'Foffthese conditions, the. values of c_ and 7 are the

following:

= -G. 26i1792x I0 "4

7 = 0.25,110731 hr

The nvo-ftxed-center calculation with the initial conditions modified for

evaluation of the position and veiocib of the vehicle at _3, $3, and 53 hours was

compared with the base orbit at 23: 33, and 53 hours respectively. The devi-

ations in position of thb two-fixed-center calculation from the base case nre shown
in the table below, included in the same table are th_ deviations of the corres-

ponding Kepler problem from the base case.

Dist. from Two-Fixed

Time Earth De viation -Center Kepler

23 hr 35.3 ER D,x 144 km 170 km

A y 132 km 200 km
_5z 33 km i0 km

33 hr 42.1 ER ,_ x 262 km 430 k.m

y 155 l,:m 250 km
.,xz 142 km 30 km

53 hr 52.7 ER x 1300 km 1970 kn-n

A y 10s0km ii00 km
A z 993 km ii0 km

18
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SUMMARY

- ' I
the _._)l)roximation of lunar trajectories by the two fixed

center pr()l)lem-._are devoir)pod. Four of these methods arise from a formulation

of the restricted problem in a rotating coordinate system. The origin of the

rotating sy,qtom, to be regarded as the center of rotation is to be so selected as

to improve the degree of approximation. The other two are developed from a

formulation in .an inertial system with fictitious fixed positions of the earth and

moon selected so as to improve the approximation.

The results of a numerical comparison of the six methods with a .typic:d

lunar trajectory and the Kepler predictions are presented. These result_ are

discu,_sed ,and some suggestions are made for further development of the theory.

iLt



LIST OF SYMBOIS

-R Position vector of vehicle relative to the earth-moon barycenter

R 1

r 1

Position vector of the vehicle relative to the earth

Distance of vehicle from earth

R 2

r 2

I

Position vector of the vehicle relative to the'moon

Distance of vehicle from moon

Gravitational constant times mass of the earth

Gravitational constant times mass of the moon

L

I L
t_

I A I = A-_t_

I O RA

HA

Position vector of moon relative to the earth

Distance of moon from earth

Velocity vector of the moon relative to the earth

Angular velocity vector of the moon relative to the earth

Magnitude of t_

Origin, relative to the barycenter, of the rotating coordinate
system

Constants relating A to L, G and

Projection of A on the plane of the moon's motion

Position vector of the vehicle relative to A

Hamfltonian for restricted problem in a coordinate system
rotating with angular velocity _ about A

Posititm vector of vehicle relative to A in the rotating system

I I5A Momentum vector conjugate to rt A

iv



H E

H I

M(t)

6

H

P

SUBSCRIPTS

E

R

o

F

Hamiltonian for the Euler, or two fixed center problem

Perturbation Hamlltonian

Rotation matrix through an angle -tot about t_

A parameter introduced to improve minimization of the effect
of the non-integrable terms in the perturbation equations

Hamiltonian in the inertial system

Momentum conjugate to R in the inertial system

J

Refers to Euler problem

Refers to restricted problem

Refers to initial value

Refers to final value

.... i_i ;.,

NOTE: In general, espital letters represent vectors and the corres-
ponding small letters their magnitudes. Bars over vectors

denote vectors in a rotating coordinate system.
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In this report two general methods of obtaining approximations to the three

dimensional restricted problem in terms of the two fixed center problem will be

discussed in detail, The first method is based on a formulation of the restricted

problem in a rotating coordinate system and the Second on a formulation in an

inertial system. In both methods perturbation equations are obtained for the

initial conditions of the two fixed center problem regarded as osculating time

varying parameters for the restricted problem. B_th of these methods represent
1

generalizations of a method developed by Arenstorf-for treating the two dimen-

sional restricted problem in a coordinate system rotating about the barycenter

of the earth and moon,

The present formulation in the rotating system involves the selection of four

scalar parameters in such a way as to reduce the effects of the non-integrable

terms in the perturbation equations, Three of these paramctcrs define the origin,

to be regarded as the center of rotation, of the rotating system. The fourth allows

part of one of the integrable terms to be used to reduce the effect of some of the

non-integrable terms. A method for the determination of these four parameters

is presented, and a set of osculating initial conditions is obtained by an approxi-

mate integration of the perturbation equations. In addition to this sot three other

sets are obtained by variations in the values of these parameters. In all of the

methods developed the center of rotation is close to the center of the earth ff

the portion of the restricted orbit to be approximated has a close approach to the

,_T.fh _nrl nn e,lr_ nnnrn_oh tn t.he moon. The. center of rotation is close to the
I_A- ..........................

moon if the portion of the restricted orbit has a close approach to the moon and

not to the earth. For midcourse portions, the center of rotation is somewhere

between the earth and the moon. No attempt has so far been made to extend the

theory to the approximation of portions containing close approaches to both the

earth and the moon.

!
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The formulation in the inertial system makes use of fictitious fixed positions

for the earth and moon, so selected as to reduce the effect of the non-intograble

terms in the perturbation equations. Two sets of formulas result which differ

in the approximations used in the integration of the perturbation equations.

Altogether, then, six schemes are developed for apprcacimating the restrict-

ed problem by the two fixed center problem. These schemes have been tested

numerically for various portions of a typical lunar trajectory obtained by numeri-

cal integration. Some results of thisnumerical comparison are presented,

following the analytical treatment.

The comparison shows clearly that the formulations in the rotating system

are superior and the reasons for this are discussed in the last section.
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THEORY FOR THE ROTATING SYSTEM

Derivation of the Perturbation Equations

The equations of motion of the restricted problem in an inertial system with

origin at the barycenter are

R1 , R2

R-- -_ 3 _ 3

rI r2

Consider a point A defined by

where L and L are position and velocity vectors of the moon relative to the earth,

and hence are known functions of time satisfying the relation

|
|
I

ol •

L = - (D+D') _--_=_x (_xL) AI=aL+yL

oo

I. =_x L A=_x(_xA)=-w2A

n= Lx_.
2

The point A thus rotates about the barycenter with the earth and the moon. The

equations of motion for the restricted problem in an accelerated coordinate

system with origin at A, but with axes always parallel to those of the inertial

I . system, are

•. R 1 R 2 ..

I O RA--" -""'--'Arl3 r23

since

°. ., .o

R=A+R A, R=A+R A, R =A +R A

and finally in a coordinate system rotating about A with angular velocity C4 the.

equation of motion become

3

(z)

_)

(3)

(4)

(5)



'RA=- _ .... A -nx(nXRA)-2(_x_t A)

r13 r23

"

(6)

where bars denote vectors in the rotating system. We assume that at time

t = 0, the axes of the rotating system are parallel to those in the inertial

system, so that the constant vectors X', _and X satisfy the relations

X=A (0) _=_,(0) _=_ 2X1=_t#2A1(0 ) (7)

It is readily verified that the Hamiltonian

I-2 ._.. _2- A r-fl-RAxI_ A
HA = 2 P A " r_l r2 RA*

(8)

is a Hamlltonian for the problem represented by Eq. (6) with

RA = gradp A HA ffi_A " f_x RA
(9)

and

_A = i_A + t_x _tA = - gradRA HA

R1 , R2 0j2
- - ,u --3 "_ --3 + Xf _ x l_A

rI r2

R1 _ _' R2 +t_ 2= - # ---3 _ _1- Ox _._ nx (fix RA)

r I r2

which reduces immediately to Eq. (6). A word on the relation between position in

the rotating system R A and its conjugate momentum _Aand the position R A and

velocity RA in the non-rotating system is necessary for the interpretation of re-

sults to be obtained later. Since the rotating and non-rotating systems are assumed

coincident at t ffi 0

_A0 = RA0

_A0 " _ A0 + t'lx RA0 = RA0

4

(io)

(ii)



are vector equations which are valid component by component, and since RA0

is the velocity relative to A in the rotating system while _x RA0 is the velocity

due to the rotation of the system it is seen that the initial value of the momentum

conjugate to RA is just the velocity in the non-rotating system. The same state-

ments hold for time t also, except that to got component agreement a rotation

through t_t is necessary. That is, at time t

RA = M'l(t) fiA

RA = M-l(t) PA = M-l(t) (l_A + Gx RA)

where M-l(t) may be regarded either as a rotation of the axes of the rotating

system through an angle -wt or as a rotation of IIA and _A relative to the

rotating axes through and angle u)t, both rotations about the vector fl which is

the same in both systems.

The Hamiltonian HA may be written as the sum of

lPA2 _ N'
H E = _ - rl r 2

the Hamiltonian for the Euler problem with Hamilton equation

[_ AE gradPAE= - HE = _AE

•. a 1
_AE = RAE = - _--'_ - _' 3

rI r2

and a perturbation

H l=-w 2 R A" TkI-G'RAx 15A

where the subscript E in Eqs. (14)refers to the functional forms for R A and

15A obtained by solving Eqs. (14).

A solution of the restricted problem with Hamiltonian given by Eq. (8 )

and Hamiltonian F_xls.(9 ) and (10)is now sought in the functional form of the

solution of the Euler problem with time varying initialconditions. That is,

5

(12 

(13)

(z4)

(1,5)



one seeks the solution of the restricted problem,denotedby a subscript R°in the

form

ltAR (RAR 0, ]SAR 0, t)

iSAR (RAR0' _SAR0' t)

= RAE (RAE0 (t)' _AE0 (t)' t_

= PAE AE0(t), ISAE0(t ), t/

with initial conditions for the restricted andEuler problems satisfying the rela-

tions

I1AR([tAR0' PAR0' 0) = RAR0

PAR(rtAR0, 15AR 0' 0) = PAR0

= [1AE (_tAE0(0),

= PAE (RAE0(0)'

PAE0(0), 0) = RAE(0)

PAE0(0), PAE0(0)

It has been shown by Arenstorflthat the functions ltAE0(t ) and PAE0(t)

necessary for the validity of Eq. (16) satisfy the differential equations

(16)

(17)

d ._tAEO(t)= grad
d-t" PAEO H1

_-t" PAE0(t) ffi " gradRAE0 H1

where

H1 = H1 (IIAE0(t)' ]SAE0(t)' t_

is obtained by substitution of _tAE (RAE0(t), 15AE0(_), t_and PAE (]'tAE0 (t)'

PAE0(t), t) for lkA and PA in H I (given by Eq. (15), To actually carry out the

substitution using the solution of theEuler problem (which is known in closed forr._)

and then compute the gradients required in Eq. (18) would be very complex be-

cause of the extreme complexity of the closed form solution. Even could this

be carried out the integration of the resulting highly nonlinear equations in

RAE0(t) and I_AE0(t ) would be very difficult. Further, any approximation method

for integration of perturbation equations for initial conditions must be developed

with great care to avoid the introduction of troublesome secular terms, which

increase in order with higher order approximations.

(18)

(19)



In view of this last fundamental difficulty,only a first approximation will

be attempted. This approximation will lead to some integrable terms in the

perturbation equations and the point A will be selected in such a way as to reduce

the effectof the non-integrable terms, which will then be ignored. The resulting

expressions for the time variation in the initialconditions and hence the solution

of the restricted problem represented by Eq. (16) will thus have limited validity

in time. The hardest part of the problem will be in obtaining an estimate for

duration of validity. Although this might appear to restrict considerably the

application of the theory, itshould nevertheless be noted that from the solutions

of a sequence of two fixed center problems, each valid for a certain time, the

solution o_ the restricted problem may be constructed solely in terms of closed

form calculations without the use of numerical integration. Such a procedure
t

will be outlined later.

Exvligit Form of the Perturbation Equations

To proceed with the approximation H1 ts written in the form

R 1 = - t_'RAE 0 x PAE0 - co2 6 [_AEO AI" c_2 (1-6) RA_ X 1

R 1 R 2

r 1 r 2

(20)

where the integral is obtained by time differentiation of (-l,j 2 6 _{AE XI-_'_tAEX PAE )

and use of the Hamilton Eqs. (14) for the Euler problem. The first two terms

of H1 will be shown to lead to integrable terms in the perturbation equations (18) for

the initial conditions. The factor 5 permits part of the R/_ A 1 term to appear with

the integrable terms and part with the non-integrable terms. This second part helps

to reduce the effect of the other non-integrable terms. The third term and the
,1_4-_ 1 ..... • ....

•,,,_s,,_ a_ nut written explicitly in terms of initial conditions, it is these terms

for which an effort at minimization will be made by proper selection of the factor 5

and the point A. To see how this may be done one now takes the gradients of H1

with respect to RAE0 and PAE0 to obtain the perturbation equations. The differ-

entiation of the triple product in the integral is facilitated by noting that
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I
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I,

|

|
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i

te
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!
k

so that

I

RAX[I1=RAX_ _+_+'_t' L_

_tA x _,2---_A x _---_ ,L_tt+;z

R2 = RA + _k _ T, (2Z)

(22)

The perturbation equations for the time derivatives of _tAE0(t) and PAE0(t)

are readily verified to be

d-[dRAE0(t ) = gradpAEoHl=- _nXRAE0 _w2(l_b)_Rp A1

- _"it025 _ppAI-_Rp(GxM-WQ)1 dt

(23)

and

_-tPAE0(t) - - gradRAEOH I= - G x PAE0 + w26 A1 + w2(1-5)_RR A 1

+ _ico26_pRA1-_/RR(flx M-coQ)1 dt

(24)

where the M and Q are vectors given by

U /

? . _,_ .

M=_ 3 - +_ 3

rI r2

_+_
r I

(25)

, R 2

_+_
r 2

These vectors are so defined that they have the same dimension. The _'s axe

matrices given by



r_R

_/RR \ })RAE0i 5 PAEoi

(26)

with the ith row and jth column containing the derivative of the jth component of the

time varying vector in the numerator with respect to the ith component of the initial

value vector in the denominator evaluated at RAE0(t) and PAE0(t). Itmay be noted

that the transposes of these matrices constitute the transition matrix for the Euler

problem with the transposes of the first two matrices forming the top three rows

and the transposes of the last two matrices forming the bottom three rows.

Dcterrnination of the Origin A and the Par_rneter 6

The first term in the right hand side of Eq. (23) and the first two terms on

the right side of Eq. (24) depend only on the initial values RAE0(t) and PAE0(t)

and ff these were the only terms present Eqs. (23) and (24) would be integrable.

The remaining terms all involve components of the t_ansition matrix for the

Euler problem and no attempt will be made to include them in the integration.

Instead methods will be sought for making them small, and this will be done by

seeking an approximate minimization of the vectors on which the matrices operate.

These vectors appear in both equations as follows:

N 1 = a)2(1-5)]l 1 outside the integrals
(27)

N 2 = _J26 ItI inside the integrals

together with M and Q defined in Eqs. (25), which appear inside the integrals.

Itwill be noted that all these vectors have the same dimension. The vectors

M and Q are functions of time. Since however, they have, effectively, the cubes

of rI and r2 in the denominator, itis clear that they are large only for brief

periods of time at approach to the earth or the moon closer than a few earth

radii.



|
As a first trial at minimization, 5 and A were sought such that the

scalar u

Or= N12+ N22+Mo 2+M_c 2 (28)

is minimized, where Me and Mf are computed from initialand anticipated final

conditions, respectively. The omission of Q is heuristically justifiedby an argument

of the following type. Suppose the initial position is close to the earth and the final

position close to the moon. Initially the r 2 terms are small, so that to minimize

the rI terms + must nearly vanish in order to keep M ° small. Itwill

then follow that Qo is also small. Evidently, of course, such a procedure will

mean that both M{. and Qf will become more or less large depending on the final

value of r2. In effect, this will place a limitation on the duration of validity of.

the two fixed center approximation.

The minimization of Eq. (28) will now be carried out. Since M and, for

that matter Q also, are independent of 5, partial de rivatives of u with respect

to 5 involve only the N 1 and N 2 terms:

ao' _N1 _N2 w4 X2 (25- 2(1-5 ))= +N2"

1
which vanishes for 5 =3" Itnow remains to minimize

lw4x-12+ M 2+ Mf2ql=2 o

(29)

(30)

with respect to a, _ and 7" That is the equations

5_i 4 _1 b M o b Mf

_ =w J_l*_+ Mo° -'_-x" + 2Mf-"_'_-= 0 (31)

where x denotes a, _ and 7 must be solved for a, _and 7"

"I" .--

7t=cxL+_+yL , _lffiaL+7 L

Recalling that

(32)

10
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one obtains the following:

= o,
b_ _ bB

_A I
(33)

and from the first of Eqs. (25) evaluated at initial and final positions, respective-

ly:

b_ r I . rI r2 3 ' _T r 1

so that

(35)

(36)

M. b___M= W2 _l, M._
r 1 r 2 '

7 (37)

Substitution in Eq. (31) forx = _ and 7 lead to

fl=7=O (38)

while for x = _, one obtains

rlO r203 rlf rlf

(39).

+ 211li'12[( i )_. +
rl03 r203 rl03 r20

or

+ 3 3 3 r23rlf r2f rlf f

=0

#

a _' - _ i=O,f

3 r2i3tit3 r2i rli

' lw4[7,
t=0,f rll r21

(4o)

Ii



%0

Some comments on the value of _ may be made. If a close approach only

to the earth is made, that is if either rl0 or rlf is close to unity while r20 and

r2f are both large it is readily seen that

I

O("_ _.__L..,

which corresponds to placing the origin at the earth, while if a close approach only

to the moon is made

which corresponds to placing the origin at the moon. Ifa midcourse portion of

the trajectory is to be approximated so that none of the r's is near unity {vwill

be somewhere between these extreme values -- that is the origin will lie on the

line of centers between the earth and the moon. The origin is at the barycenter

for ot= 0.

_tegration of the Perturbation Equations

Once the point A has been determined the non-integrable terms in the

perturbation equations (23) and (24) will be ignored and the equations to be

integrated are

dtd---RAEO(t ) = _ -_ x R AZO(t) (41)

d
d"_ PAEO (t)= - _=_x PAEO(t) ÷ t_25 _[ (42)

= - r_"x <PAEo(t) ÷ 5 _ x _>

where use has been made of the relation

Clx(r;x =- 2 K

The integrals of these equations are, since 6 _ x/_ is a constant,

(43)

12
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ttAE0(t) = M(t) RAE0(0) (44)

- 1ISAE0lt)= M(t) L_AE0 (0)+ 5_xX -6 _xX (45)

where the matrix M(t) is a rotation matrix through an angle -cot about the

direction.

Referring back, now, to Eq. (16), itis seen that, in the rotating system,

a solution to the restricted problem valid from the initialtime zc_-o to some

time t, determined by how long the nonintegrable terms remain negligible, is

obtained by substitution of the expressions (44) and (45)for RAE0(t ) and PAE0(t)

in terms of the two fixed center problem. This means that in order to construct

the solution of the restricted problem in terms of that of the two fixed center

problem, it is necessary, for each time t of interest, to compute initialconditions

from Eqs. (44) and (45), and then obtain the solution,evaluated at the time t, of a

two fixed center problem with these initialconditions. Thus ffn points on the re-

stricted orbit are desired, n differenttwo fixed center problems must be evalu-

ated.

One other point should be mentioned. The initialvalue PAE0(0) is to be

thought of as given by 15AR0, which in turn is determined by the first Hamilton

equation (9) for the restricted problem evaluawo at rime t=0:

o

PAR0 ffiRA0 ÷ Gx RA0 = RA0 (46)

where RA0 is the initialvelocity in the non-rotating system, since the assump-

tion has been made that the rotating and non-rotating systems have parallel axes

at the initialtime. Once PAE0(0) has been been determined PAE0(t) is given by

Eq. (45) and is to be interpreted as an initialvelocity relative to X in the rotat-

ing system for the two fixed center problem, by virtue of the firstof the Hamilton

equations (14) for this problem. Since in the rotating system the earth and moon

are fixed the initialvelocity PAE0(t) is the same relative to any point in this

system. The two fixed center solution obtained from this initialvelocity PAE0(t)

and the initialposition RAE0(t ) lead to position RAE(t ) and velocity PAE(t)

for the two fixed center problem, which are to be interpreted as position RAR(t )

and momentum _AR(t) for the restricted problem in the rotating system.

13
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TIIEORY FOR TIIE INERTIAL SYSTEM

Derivation and Integration of the Perturbation Equations

A direct approach to an approximation of the solution of the restricted

problem by the two fixed center problem in an inertial coordinate system can

be developed as follows. Recalling the equations of motion for the restricted

problem in the inertialsystem with origin at the barycenter.

" R1 0 R2

a _ -_--_ - _ 3
rI r2

itis easily shown that the Hamiltonian is

T
H = _- rl r2

This Hamiltonian has an explicittime dependence since rI and r2 are distances

of the vehicle frond the earth and moon which are assumed moving in known

orbits about the barycenter. The momentum P conjugate to position R relative

to the varycenter is just R, the velocity relative to the barycenter. The first

Hamilton equation expresses this fact, and the second, together with the first,

yields the equations of motion (1).

In this formulation two fixed points are selected for a fixed earth and a

fixed moon. The selection of these points is to be made so as to minimize the

non-integrable portion of the perturbation equations. Thus, denoting positions

relative to these fixed points by stars,the equations of motion are

r2 \r_ 3 r13 \r_ 3 r23

and the Hamiltonlan is

H=_ -r* -,., /a r* "' + --
- 1 " 2 i - 1 r*2 -2

The Hamiltonian can be expressed as the sum of two terms.

Hamiltontan for the two fixed center problem

H E = _ r*l. r* 2

The first is the

14

(1)

(47)

(48)

(49)

(50)



and the second

r* 1 rl'_) += _ _ r* 2

is the perturbation Hamiltonian which may be written in the form

= ! + !_H1 _(1 ) _t,( 1
r*10 rl0 r*20 r20

_j'{,[R*I_R*I RI"R1]+ ,

r* 13 rl r* 23 r2

dt

Perturlmtion ,,quations for the initial conditions may now be written as
!

d-'t'dRo(t)=gradP OHlf0_gradPO_{...}d t

(51)

(52)

(53)

|
|
|
|
Io
!
!

R10*d f
dt Po (t) =-gradRoH1 = u_.

rlO .3

R10 "_+ .fR20__*

r 3/I0 P _'r20 .3

R20"_3j+ gradRo_{'"}dt

r20

H the terms involving the integrals are ignored in the perturbation equations, one

obtains

Ro(t ) _- Ro(O ) (54)

Po(t)= Po(O)+ (t'to) [_ _ R10--_* -

rl0 .3

' R * R20
"_+ / 20 "_

R10,3 J , _-r_0,3 r20 _; ]
rl o

since the first of these equations implies also

Rto*(t ) = Rio*(O) Rio(t ) = Rio(O ) i = 1, 2 (55)

Selection of Fixed Positions for Earth and Moon

It is not easy to see how the fixed positions for the earth and moon should be

selected so as to minimize the contribution of the integrals to the perturbation

equations (53); Examination of the equations of motion (48), however, suggests

that two cases should be considered as follows:



I

I

l)

2)

Motion from earth towards moon; fix earth in its initial and moon in

its final position.

Motion from moon towards earth; fix earth in its final and moon in

its initial position,

I
i
i.

The initial conditions for the two fixed center problem will then be determined

by the condition that initial position relative to the barycenter is unmodified and

initial velocity relative to the barycenter be determined from Eq. (54), with

momentum identified with velocity. The solution RE(Re, Po(t), t) and PE(Ro, Po(t), t)

for the Euler problem will then be related to that for the restricted problem by

RR(ao' Po' t)= RE(n o, Po(t), t) (56)

i
i

PR(Ro ' "Po' t)= PE(Ro, Po(t), t)

where R R and PR are to be interpreted as position and velocity relative to the

barycenter at time t.

i
i

I
jno
l

RESULTS OF NUMERICAL COMPARISONS

Two methods of approximating the restricted problem by the two fixed .

center problem have been obtained in the preceding two sections. In addition to

these methods, three others based on the formulation in the rotating system have

been considered. These last three methods are defined as follows:

A. The center of rotation is taken at the center of the moon if the portion

of a lunar trajectory to be approximated lies in "moon reference"; that is, if vii

points on this portion are within about 9 earth radii of the moon, For portions of

the trajectory outside moon reference the center of rotation ha taken at the earth.

The method has not been applied to portions of a lunar trajectory crossing the

moon's sphere of influence. Thus the values of a used for method A:

f

a = - _ earth reference
la+la

a = --P--, moon reference

are the two extreme values noted in the discussion following Eq. (40) for ca

16



In addition, the parameter 5 is taken to be zero.

B. This method uses the value of _ determined by Eq. (40). The value

of 5 is taken to be one.

C. This method also uses the value of (_ g_iven by Eq. (40), and 5 is set

equal to zero.

The two methods already derived are identified by

D. The method in the rotating system.

E. The method in the inertial system.

F. Finally, a sixth method was tried in which the effect of the perturba-

tion ttamiltonian in the inertial formulation was neglected. That is the initial

conditions for the two fixed center problem are to be just the initial position and

velocity relative to the barycenter.

The comparison of the effectiveness of these methods was carried out as

follows. First a typical lunar trajectory was integrated with the effects of mov-

ing earth and moon included, but with all perturbations due to sun, other planets,

oblateness etc. eliminated from the program. The integration was carried out

by the Republic Interplanetary Program using the Encke method. In this program

the earth is used as origin in earth reference and the moon is the origin in moon

reference. Various points on this typie_ lunar trajectory were taken as initi_

points and the two fixed center approximation was computed at various specified

later times. This necessitated the transformation of the initial conditions associat-

t_t] 11._1_ 41. ..... ." ..... _-L_.I-- /_--1-_!

.... _, _,,_ _,_ ,oub ,,uuLt_u_ _ru_a_ve to the origin A for the rotating formulations

and relative to the barycenter for the inertial formulations) into equivalent initial

conditions relative to the earth or moon for portions of the trajectory in earth and

moon reference respectively.

17



The basc lunar trajectory started at time t=0 from about 6590Km from the

center of thc earth, reached a pcrisel distance of about 4350Km at 71 hr. mid

reached a perigee distance of 8174Km at 153.9 hr. The entry andexit from moon

reference occurred at about 58.7 hr. and 84.1 hr. respectively.

Tables I, II, III and IV contain some typical results from the numerical calcu-

lations. Tables I and IV are for the earth-reference portions of the trajectory on

the first and last legs, respectively. Tables II andHI are for moon reference

portions approaching and receding from the moon, respectively. The left hand

column contains the initial and final times for the portion of the trajectory to be

approximated. The deviations Ax, Ay and Az in kilometers for the various

methods are entered in columns headed by the corresponding letter. These

deviations represent the difference in the rectangular coordinates relative to

the reference body, the values predicted by the various methods being subtracted

from the values given by the base case. The column headed K, which appears

in Tables I and IV, give the deviations for the Kepler problem. The last column

gives the value of a determined from Eq. (40) for use in methods B, C and D.

in Table V the x, y and z coordinates of the vehicle relative to the reference

body are given for the various times which appear in Tables I, II, HI and IV. Also

given are the distances of the vehicle from the reference body h_ earth radii. The

distance of the earth from the moon is a little less than 60 E.R.

Some general conclusions on the relative merits of these methods may be

drawn. First it may be noted that methods A and C are practically the same ex-

cept for midcourse portions of the trajectory. The reason for this is that except

for such portions the value of a is such that the origin is nearly at the earth for

earth reference and nearly at the moon for moon reference.

To summarize the results, then, for the methods described in this report

18



A a_d C are best for long range on the return leg.

B and C have a slightsuperiority for midcourse.

D is best in moon reference, on the first leg and for short range on the

return leg.

E and F are inferior almost everywhere.

The Kepler problem is superior to all of these methods for short to medium

range in the neighborhood of the earth and moon. Itfails,however, for long range

and midcourse portions of the trajectory.

CO N C LUSIO NS

The results of the numerical comparison made in the previous section show

that the formulation in a rotating system is best suited to the approximation of the

restricted problem by the two fixed center problem. This is not really very sur-

prising because in a rotating system the earth and moon are automatically fixed.

This is achieved by introducing terms corresponding to the centrifugal and Coriolis

accelerations, which are interpreted as perturbations on the two fLxcd center

problem. In the inertial system, on the other hand, fixed positions for the earth

and moon had to be selected more or less arbitrarily. As a consequence the

perturbations from the two fixed center problem so selected depends on this

selection. Thus approximations have been introduced before the problem of

approximating the effect of the perturbations can even be considered. It would.

therefore seem that a rotating system, in which only the problem of how to

treat the perturbations appears, should be the proper choice.

From the numerical results shown in the last section, it is evident that

the problem of treating the perturbations is far from an easy one. None of the

fulfilling the expectations that one might have for the theory. Nevertheless,

there are a number of reasons for expecting that further development of the

theory should lead to useful and interesting results.

19
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If, for example, one considers the determination of the origin for the

rotating system, it is obvious that the method used is fairly crude. The sum

of squares of certain vectors appearing in the pertarbation equations is minim-

ized. Evidently, if the sum were a weighted sum, different origins would be

obtained depending on the weighting factors used. It should, however, be

remarked that the present determination yields plausible results, e.g., in the

case of motion of an earth or moon satellite, one would certainly expect the

rotation of initial conditions implied by Eqs. (44) and (45) to be about the center

of the primary attracting body, or at least about a point very close to its center.

A large rotation about a point very far removed from the center would obviously

drastically distort what should be a stable orbit. Thus, the property that the

origin is closer to the earth or moon according as the portion of the restricted

problem orbit under consideration is closer to the earth or moon is a reasonable

one and shows that the theory is at least qualitatively correct in this respect.

For mtdcourse portions of the trajectory, one cannot use the satellite argument

to suggest the proper choice of the origin, though it might be conjectured that the

origin should vary continuously with the portion of the trajectory to be approximated.

It is possible to make a few remarks on the parameter 5. Reference to the

perturbation Eqs. (23) and (24) shows that ff 8 = ] th_ non-inte_rable terms are all

integrals from initial to final time, which therefore have zero initial value. It

would thus appear that for short range predictions, results for 5 = 1, that is

for method B, would be superior to the others. This result has been observed

for some midcourse runs.

It may have been noticed that the perturbation term _ • R A x PA in the

perturbation Hamlltonian H I (see Eqs. (15) and (20) could be treated in the same

way as the R A • A 1 term. That is, a factor _ could be introduced in the same

way as 80 This would change hhe rotation in the initial conditions, resulting

from integration of the perturbation equations, from an angle cot to an angle

C_t. To actually introduce the _ and obtain a value for it in the same way as

for 6 would not be easy because the terms in (1-_) which would appear both

inside and outside the integrals would be far more complex and difficult to

treat than the corresponding terms in (I-6).

2O
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To summarize, then, the various methods so far developed for the rotat-

ing system depend on the selection of four parameters (_, /3, y (determining the

center of rotation A) and 5. At this stage it appears that some sort of a param-

eter study using variations from the values of the parameters so far used, and

including also, perhaps, variations in the parameter _ defined in the last para+

graph, might well lead to some useful approximation formulae. There are many

ways in which such a study might be carried out, for example, by using weighting

factors with the vectors to be minimized, by a systematic variation of the param-

eters, or by the development of some sort of interation procedure. From the

above discussion, it would appear that Band _,should be close to zero, that E

should be close to one, and that _should vary approximately according to Eq. (40).

Only for the parameter 5 is it difficult to estimate a value except for relatively

short range predictions for which one would expect 5 to be close to one.
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Table V. Lunar Trajectory - Position Relative to Reference Body

Time in Distance in Reference

hours X in Km Y in Km Z in Km Earth Radii Body

0 47 6300 1800 1.0 Earth

1 -19000 -8000 -I0000 3.6 Earth

10 -45000 -100000 -46000 18.6 Earth

30 -53000 -210000 -82000 36.8 Earth

50 -51000 -290000 -103000 48.8 Earth

59 50000 22000 482 8.6 Moon

60 46000 20000 187 7.96 Moon

66 24000 7300 -1500 3.97 Moon

71 1300 -3700 -2100 .70 Moon

72 -5000 -3500 -681 .96 Moon

73 -10000 -2100 1080 1.62 Moon

75 -19000 1100 4450 3.0 Moon

80 -38000 9100 12000 6.4 Moon

84 -52000 15000 18000 9.0 Moon

85 -57000 -329000 -97000 54.5 Earth

86 -56000 -327000 -95000 54.2 Earth

100 -50000 -300000 -75000 48.9 Earth

120 -36000 -240000 -41000 38.4 Earth

153 2300 -13000 16000 3.3 Earth

26
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SUMMARY _,,

their associated perturbation equations. These equations are applied to the

• polar oblateness problem characterized by the second spherical harmonic. A

modified Poisson method is used to obtain the first order solution to the problem.

The modification of the method is introduced in order to eliminate the occurrence

of secular terms which, because of the parameters employed, would have caused

a rapid deterioration of the solution. The apprc_cimate solution is expressed as

a function to true anomaly. Some analysis of second order theory is presented

which suggests that difficulties with particular initial conditions may be avoided.
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DEFINITION OF SYMBOLS

Time

True anomaly

Position vector

I_R! = magnitude of _1%

Gravitational constant

Angular momentum vector

Eccentricity vector

GxP
w

Unit vector in direction of x axis

Unit vector in direction of y axis

Unit vector in direction of z axis

Eccentricity

!_GI

IP_l

Time of perigee passage

Semimaj or axis

Mean motion

Coefficient of second harmonic of the potential due to the oblateness
of the earth

2
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Polar coordinate system introduced in x-y plane

SUBSCRIPTS

1,2,3 1st, 2nd, 3rd component of a vector

o Initial value

s Short periodic

£ Long periodic

SUPERSCRIPTS

Q Differentiation with respect to time

Differentiation with respect to true anomaly
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INTRODUCTION

Among the numerous troublesome aspects which one encounters in at-

tempting to integrate the perturbation equations for the polar oblateness prob-

lem, two difficulties may occur which appear to be subject to, at least some

amelioration. In general, there are two decisions one must make before

these difficulties become apparent. These decisions consist of selecting a set

of parameters and a method of integrating the perturbation equations. The

possible sets of two-body parameters may be divided into two groups, one of

which contains canonical parameters and one which does not. Two methods of

integration, in general use, are Poisson's method (1)and Von Zeipel's method

(2). The latter method is applied only to canonical parameters. In most in-

stances, regardless of the set of two-body parameters or method of integration

employed, the results present two int¢resting properties. The first is the

occurrence of terms in the approximate solution which show a secular growth.

The second is the presence of singularities in the second order corrections for

certain initial conditions of the parameters. The first property is not, in

general, objectionable since the secular terms usually appear in the expressions

for angle parameters. However, for some parameters, such as the unit perigee

vector, the occurrence of secular terms destroys the unit characteristic and

limits the applicability of the results to relatively short time intervals.

It is proposed in this report to derive a set of parameters and their as-

sociated perturbation equations which, when applied to the polar oblateness

problem, yield, after approximate integration, equations for the parameters

which manifest no secular growth to the first order, except for one element.

A brief analysis of the structure of the second order perturbation equations is

developed which suggests that the occurrence of singularities arising from

initial conditions is not a necessary concomitant of the polar oblateness prob-

lem. The application of second order theory, however, will not be attempted in
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this report, because the parameters which have been chosen degenerate for

nearly circular orbits. Even though the set of parameters employed is de-

fective, the comparative simplicity of the perturbation equations recommends

the use of these parameters for a clearer insight into the particular difficulties

which their use is intended to eliminate. It should be noted that the degener-

acy of the parameters for nearly circular orbits is not a case of replacing one

difficulty with another, but is simply a consequence of the choice of parameters

and not of the integration technique. A more judicious choice of parameters

has been made and an improved integration technique developed which elimin-

ates the imperfections in the present method. A report is now in preparation

which incorporates these developments.

2
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DERIVATION OF A SET OF PARAMETERS FOR THE KEPLER PROBLEM

To specify the solution of the vector equation

{{+_ =o (I)
-- 3

r

six independent parameters are needed. For the purposes of this report, the

following set will be used"

cr, the time of perigee passage;

_P, the eccentricity vector_

_, a vector perpendicular to _P and lying in the plane of motion.

At first glance it would appear that this set contains seven independent

elements; but, since P and Q are mutually orthogonal, any one component may

be expressed as a function of the remaining five• The vectors P and Q may be

obtained from Eq. (1) in the following manner: Take the cross product of R and

Eq. (1)
ee

RxR = 0 (2)

Integration of Eq. (2) gives

RxR=G (3)

in which G is the constant angular momentum vector.

product of Eq. (1) and G

Now take the cross

RxG+ xG=0
r

(4)

After expanding R x G using Eq. (3) and rec_ling tlmt GG- is constant, Eq. (4)

integrates to

_R
RxG---=P

r
(5)

3
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in which P is a constant vector.

rewrite Eq. (5) in the form

To find the magnitude and direction of P_

Evaluating Eq. (6) at perigee yields

P = U /_e (7)
Np

where

e is the eccentricity of the orbit

and U
-p

is a unit vector in the direction of perigee. Let Q be defined by

Q=GxP=t_RxG+Rg 2r (8)

The magnitudes of G, P_tand Q are g, p = bLe, and q = gp, respectively.

Since R, P_.and Q are coplanar, R may be expressed as a linear combina-

tion of _P and Q

R=_I_P+_2Q

The scalar product of Eq. (9) with P yields

(9)

R_. P = r cos f (10)
_i = 2 p

P

where f is the true anomaly of R_. Similarly,

R" Q rsinf
(_2 = _ = (11)q

q

R may be written as

R= alP+ _2 Q (12)

Making use of the well known formulas

g2
r = (13)

(1 + e cos f)



2
r

it follows that

(14)

_1 = - j_ sin f
gP

(15)

e + cos f
_2 = gq (16),

PERTURBATION EQUATIONS

After having obtained a set of parameters the first step in deriving the

perturbation equations is to introduce the perturbing force F on the R. H.S. of

Eq. (1) which gives

•. pR
_R+ -_- = F (17)

r

The perturbing force F will cause Rto deviate from the Keplerian orbit, and a

new solution must be found. This solution can also be put in the form of

Eq. (9), but now the parameters G, P and Q will be functions of time. In order

to determine the time dependences, it will be necessary to obtain the differ-

ential equations for the parameters in so far as they depend on the perturbing

force F.

Differentiation of Eq. (3) gives

• go

G = R x R (18)

Substitution of Eq. (17) yields

G = R x F (19)

Similarly, differentiation of Eq. (5) gives

..... RxG
P = R x G + R x G + _--_ (20)

rv
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Substituting for

p=

From Eqs. (8),

Q et

G__andR yields

FxG+Rx (R_xF)

(19) and (21), Qis given by

g2 ° °r Rx(RxF)+F +2R(G._G)

(21)

(22)

The equation for the variation of (r, the time of perigee passage, is deriv-

ed from Kepler's equation, which, for 0 < e < 1, takes the fo,'m

- e e (23)n(t-_)=tan -lsinf e+cosf sinf l+ecosf

m

where n = J--_- and g =_+ _a (l-e2).
+a 3

For e > 1, Kepler's equation is given by

I Se 2
n (t - c;) = tanh -1 sin f - 1

e_e 2 - 1
- sin f (23')e + cos f 1 + e cos f

where n = J'_3 and g = _-_a(e 2 -1). Using" various identities, Eqs. (23) may
-a

be put in the following form

-1 R-R R.R
n (t- c;)= tan

(1 - "_a)a2n a 2 n

n (t - (;)= tanh-1 "

(1-1) a2n a 2n

Differentiation of these equations with respect to time, and substitution of
e•

Eq. (17) for R gives, in either case

(24)

(24')

{ a=[
-- _-- U-- p

__ r i) (25)
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where

1
_ _.mm m

a

R'R 2

r

and

a _. F r2a_

It is convenient to have available the total time derivative of true anomaly.

Differentiating the expression

R Y
cosf=--- -- (26)

r p

it follows that

-(sinf)_=rR-r _R-r "_rP+R--" r_>
(27)

and therefore

=i_i. _i (2s)
r 2 ,,p q

APPLICATION OF THE PERTURBATION EQUATIONS
TO THE POLAR OBLATENESS PROBLEM

In this report, the polar oblateness problem will be assumed to be char-

acterized by the perturbing potential

_:r T - r
(29)

In order to apply the perturbation equations, previously presented, to this

problem, it is necessary to specify the perturbing force F. This force is the

gradient of the perturbing potential @.
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The procedure for applying the perturbation equations may be outlined as follows:

Ca)

(b)

(c)

(d)

(e)

Reexpress the perturbation equations in terms of the parameters

P, Q, and G_, and true anomaly, f, by substituting Eqs. (9), (12),
and (30) for _R, _R, and F, respectively.

Since the resultingequations are functions of true anomaly, it is
legitimate to take f -- g/r 2, for a first order approximation. It

follows that the differential equations with respect to time may be
transformed to differential equations with respect to true anomaly.

These perturbation equations are now written as Fourier polynomials.
Terms with constant coefficients are transposed to the L. H. S.

To obtain a first order solution for the system of equations derived
in (c), all parameters on the R. H.S. and the parameter g, wherever

it occurs, are held constant. Under these conditions, the system
can be solved exactly.

The perturbation equation for the parameter (_ is treated similarly
with some modifications.

Carrying out the operations indicated in Ca), (b), and (c) the results are:

3
3_ K 2

P' e
- 4

g

{kQ3 _P P3Q3 R-h- -_- p q _L3P3 2 5 Q3 2 1]}2 9.+9. _.
P q

! _ { [P3 (¢ 2 (__2= _i___ -_ sin --_-g4 k T sinSf+esin2f+e f) Q3

I ,'+ecos2f-_- cos P \ 16 _-sin4f

I + ( 77_+._)15e2,sinSf+Sesin2f+(7+ 5e 2_) sinf_ PsQ3_5e2
pq \"_""

+3ecos4f+( +_-e 2) cosSf+4ecos2f+(_+ e2) cosf

cos 3 f

(31)

cos 5 f



(Q3"2
5e 2( 3e 7 11 e 2.

sin5f+ _--sin4f+ (_+ q-_-)sin3f+esin2f

3e2 _ } (e 2 2 f}l+(-_--- )sinf - -_- sin3f+esin2f+(l+ eT) sin

_Q r-- (P3_2('Se2 3e 7 17 e2) cos3f+3ecos2f+"q L- _-j \--f_- cos 5f+ _- cos 4f+( + _-_

+ (_ + -_ } q-_ cos 5 f + _- cos 4 f + (:_ + _'6 e2)

Be
cos 3 f

9e 2 P3Q3 ( 5e 2 7
+ecos2f-(7+-8-cosf)-__T sin5f+3esin4f+(_+3e 2) sin3f

+4esin2f+(_ -2-_)sin (4cos3f+ecos2f+(l+ 3e2T)c°s j}

Q, 3p3K2 e P3 P 5 + 3Q3 2 1_ _ P3 Q3- _ {--_T+'TE_-__.q_. _ q ,, q}

(31) cont'd

!
g3

I e 2 +---P P3_2 5e 2

i +esin2f+_-sinf)7 p [(p'-., ('T'6"

= P3 ('e 2 3e2 cos f} + Q3 23_3K2 ,. {-_k[ -_- x._- cos 3f+e cos 2f+ T _ (_"

cosSf+_ cos4f

sin3f

3e 5e 2,
+ --_ cos 4f+ (_ + -IT j 5 f_÷cos 3f- (7+ 8 e 2) cos PsQ3 (Se 2

p'-'_ _- 2 sin 5f



I

I +3esin4f+(_+3e 2) sin3f+4esin2f+(_--_)sin -
cos 3 f

_[ P3_2(5e2 3e+ e cos 2 f + (i+ -_-; cos

I

I 3e lle 2

I +-_-sin 4f + (I + --l_) sin 3 f

I

\ 16

.3e2
+e sin2f +'i-_)sin f_

p q \ 8 cos5f+3ecos4f+( +--e 2) cos3f+6ecos2f

sin 5 f

3e2 ,
1 3e2, f_ _._/fjj_fe2sin3f+esin2f+(l+T, sin-'_7_+ (_ + T J cos - (31) cont'd

- 7- T. x_k!
2

-I _'g3K2 {p <2 cos 3f+ cos 2f + 3e__cos f._ + -_- _._fe
sin 3f + sin 2 f

I ;.=0]+_[_.+ . _-(_.=.,
I

|e w_ore

e+ sin 2f + _ sin

Q3

COS
3f-cos2 f

I ( )' =ddf-_

10



Consider the system of homogeneous equations obtained by setting the

R. H. S. of Eqs. (31) equal to zero.

3_2K2PL f_ Q3_ -P£ P3£ Q3L Q£

] g£ P_ P_ PL £

G' 3"2K2g£ (-'P_ P3_ _£ Q3L } x k f0
I -_ + 4 '" p-'_ p_ + q_ q£ -

g_

(32)

i

!

Itwill become apparent that _P_,_L' and _G£ represent the long periodic

terms of _P, 2, and _G,respectively.

For this system of equations, Eq. (8),_L = _GLX _P£ stillholds. Since

| P_2=]. _£ q2£=_$. _$ g2 Lf_G • _GL

Itfollows from Eqs. (32) that

I
I -_ .r,--o

%

(33)

I Therefore, for this system of equations, p_, q£, and g_ are constant.

Similarly,

i

I

_ +_ (_ 0 (34)

I 11

I
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so that

is constant.

=B

Using the identity

_G_ -P_Q3L
kx --=

- gL PLqL ell PL

it follows that

G£++++_7_% ___
_ J-.g+ - g+

Therefore, Eqs. (32), can be rewritten as

Q3_I +'+ +_+)++-+,+-..+(,.-+,++)-_--):o
--L Ap£ L_--kx_-L- q+ -- q£

I

I

I

, r-- -Q+
L+ Aq_'LQ3-_ kx g,

Q +++(+.B_.,)+_._.:o
P_ - P_

I •

I

I

O

•3_ "K 2
where A = --

4
g+

? I

The third components of P'j_, _ j_, and <3 £ are

12

(35)

(36)

(37)

(38)



Q'3_+ Aq_ _3---_(2- 25-B)=0 (39)

G'3_ =0

which form a system of first order, linear, homogeneous differential equations

with constant coefficients. The solution is

P3_ = P3o cos {A (5 B - 2) f} - Q3o sin {A (% B - 2) f}

Q3£ = P3o sin {A(5 B - 2) f}

G3_ = G3o

where P3o' Q3o' and G3o are initial conditions.

ponents of G' are

(40)

Similarly, the first two com-

G'I_-AG2_=0

G'2_ + A GIL G3_ = 0
g,

This system has the solution

(41)

-i_ = Glo g_

where Glo

g_ G2o cos _. g_

and G2o are initial conditions. Using the identities,

(42)
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Eqs.

G2£ G3 ! = P2£ P3£ Q2L Q3L

gL g_ PL P£ qL q£

(41) may be transformed into

G' A {P2_ P3.__ Q2£ Q3L'_

1_ + g_.p_ P£ +VVJ =0

Eqs. (44) together with the identities

•,__..++:_ Q:,._._+__%.._
g£ P_ q_ P_ q_

_%.+.: __ % _+'1__.++%
g£ PL qL P£ q£

determine the remaining components of _P and Q which are

_ o %%}
P_ g+ qL

P2_ {A h % -5 "5 _

G I

QI++:+,+{A°,+++'++-- +--\'_+ J ;P+ q_

_% %__ %___(-<_1++/

14
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(44)

(45)

(46)
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I expressed as _ _ _

I P1p2 C 0 0 cosA(_B-2>fII P3

Q1

I Q2 = 0 C 0 • sinA(_B-2>fI

I

l

I re L0 0 C

0

n - G Gcos A -3_ f sin A -3_ f

gL g_

I C -sinA_-_ fG3 cosA g3_fG-

L 0 0

I F °°l
| _/o _o I
IO ,oo_j

All quantities appearing on the R. H.S. of Eqs. (46) are lmown. After

some algebraic manipulation, the solution for the system of Eqs. (32) may be

co,_(__>_

0 Plol

P2o I

P3o I

Qlo{

0 Q2ol

q3ol

Glo I

0

0

1

To find the particular solution of Eqs. (31), assume a solution of the form

(47) where Po' 90' and _Go are functions of f. Substituting solution (47) into

the L.H.S. of Eqs. (31) will yield three equations for P ' '-o ' -Qo ' and_Go'O

After solving for these derivatives, and recalling condition (d), Po' 9o' and

G may then be fmmd by integration alone. If the second order terms in this
--O

15
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solution are neglected, the results are equivalent to integrating the R. H.S. of

Eqs. (31) and adding the results to solution (47). The first order solution for

2, 9,_G, is

i ..f

1

I _---_,+E_,-l',o
_ G f

I
!

I
I

i

I
I
IO

I

(48)

where -Ps' _s' --Gs' are the integrals of the R.H.S. of Eqs. (31), and the

quantities in brackets are to be evaluated between the limits f and fo"

In the perturbation equation for _, Eq. (25) it may be noted that

R • F =-3_ R • F =d_-
- - dt

If the parameters a and _ are held constant at their initial values

Therefore, Eq. (25) may be rewritten in the form

3a o

d_ V. - or°)

2

a {Cl-:_._-r )=-_ _ __P ._F
P

(50)

Differentiation with respect to time is transformed to differentiation with

respect to true anomaly, and the R. H.S. is expressed as a Fourier polynomial.

The result is

16
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| r_+_ cos4f+\ 16

3a o
+--¢(t }/_ - _o ) = L 16 cos 5 f

g3p

+ cos3f +-_-cos2f+ _- cos

+ L 16 -_- cos 4 f + - i-6 e cos 3 f

I ,o _____ - _[_
-T co. 2 f* _. 8 4/cos fj -'_- "q-" s_ 5f- -_ s_4f

I
+3o,,_.2_-r 3°2

',.4!
! +O-;)co,,j_

+_-).,..,]+[._

(51)

sin4 f+(_-_sin3f

cos 3 f+ e cos 2 f

Holding the parameters on the R.H.S. constant, Eq. (51) is integrated to

yield

3ao$ f

I _' = °o * f'. -'_ (' - Oo) ],
0

I where crs is the integral of the second member of Eq. (51).

(52)

I
le

I

I

C ONC LUSION

The solution (47) obtained has f appearing in arguments of sines and

cosines, these terms having two essentially different periods: 2_/j (short

period where j is a natural number), and 2_/A (long period where A is a

quantity and equals 3/_K2/g4).-- The solution i s well behaved for allsmall

values of f because f appears in arguments of sines and cosines and because

17
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these functions are found only in the numerator. This would not be the case if

Eqs. (31) were integrated keeping all parameters constant; for then, the long

periodic terms in the previous solution would be replaced by their first order

approximations. This solution would grow linearly with time.

The next step in the usual procedure for deriving the second order

approximation consists in substituting the first order solution for the parameters

in Eqs. (31). Before this step can be carried out, however, it should be recall-

ed that Eqs. (31) were obtained by putting dt/df = r2/g. If higher order solutions

are to be found, this approximation is no longer valid. Therefore, for a second

order approximation, dt/df must be replaced by its first order approximation

derived from Eq. (28).

Now suppose the parameters are replaced by their first order solutions,
3

terms of order K2 are neglected, and products of trigonometric functions are

replaced by trigonometric functions of sums. Under the following conditions,

the resulting equations may be integrated to give a well behaved second order

solution:

(a) No constant terms are present

(b) Whenever cos _f or sin _f occurs (_ a small quantity), _ must
also appear as a factor in the numerator.

If these conditions are not fulfilled, and the equations are integrated,

f may occur outside trigonometric functions, or small divisors may be present.

A possible solution to these difficulties is obtained as follows:

(a) Denote the short periodic terms of the first order solution of

_P, _, _Gby -Ps (-_o' _o' f)' _s (-_o' _o' f)' -Gs (-Po' _o' f) and

assume a solution of the form _P = -P_ +--Ps (-_' _' f)' _ = _L

+ _s (-_L' --Q_.' f)' G =_Gp, + _Gs (-_L' _L' f) -P_' _L' -GL are new

variables which, to first order, are equivalent to solution (47).

(b) Substitute these expressions into both sides of Eqs. (31) as

modified in accordance with the qualification regarding dt/df

mentioned above. Neglect terms of order K23; expand into

Fourier polynomials, and neglect terms multiplied by sines

18
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and cosines. P_, _, G are determined from the resulting equations.

Investigations are currently being pursued for the purpose of finding the

second order solution by this method.

APPENDIX

EXAMPLE OF RAPIDLY VARYING PARAMETERS

Whenever perturbation equations for a set of parameters are solved employ-

ing an approximate integration method, it is always desirable that the parameters

be slowly varying. It is likely that, for the polar oblateness problem, no set of

parameters exist in which all elements possess this characteristic. An example

is presented to demonstrate the existence of rapidly varying parameters for the

polar oblateness problem. Consider the equation

•" E@ _-) ]z+_= 3"K2 25 -5 z+2z
r r

which is obtained by taking the scalar product of Eq. (30) with k. Given the

initial conditions z (to) = z (to) = 0, it follows that all derivatives of z evaluated

at t - t o are zero• Therefore z is identically zero•

In the following example it is to be assumed that this is the case• Then

_G= _Itx F = 0 or G = G 3 k where G 3 is a constant. Now introduce a polar

coordinate system, (r, 8 ) in the x-y plane. From Eq. (30) two scalar equations

result:

• 3_K 2
r -r(_))2 ___

r r

1 d
r _" "_r2 ()) = 0

A particular solution of these equations is given by

19



r=r o, O=Oo_-t +---_

r o r o

where ro, 9 0 are constant. Since

3uK 2
g= Ir 20] =_ro, + r

0

and

e cos f =-_-- - 1

_r °

it follows that

3K 2
e COS f =

2
r

O

Also, r = 0, so that

R
• . 9r ° e sin f

R = r r = ---------- = 0
g

As a result it is seen that e sin f = 0. Therefore, it may be concluded

that e > 0, f = 0. From the equation

Cc PR=r OSfp + sin f _-

one obtains

P
R=r -
-- p

It is clear that the vector _P is always in the direction of the vector RR- and

is thus a rapidly varying parameter. Consequently, there is no guarantee that

the method of variation of parameters and an approximate integration procedure

will yield a satisfactory solution.

2O
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SUMMARY

This report describes --_ method for obtaining a first estimate of initial_ j

values of the Lagrange multipifers for the "two point boundary value problem

of the calculus of variations."

This first estimate is obtained by assuming the "two impulse orbit transfer"

problem to be a reasonably close approximation to the calculus of variations

problem.
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U

R

r

V

__v

_V

k

T

m

m

c

X

X

t

t 1

_X, _T

DEFINITION OF SYMBOLS

Gravitational constant

Vehicle position vector

I-R I = magnitude of _R

Velocity vector of vehicle

Impulse velocity vector

IA _V i = magnitude of A _V

Ma&_imde of thrust

Unit vector in direction of thrust

Mass of vehicle

Mass flow

Constant, proportional to specific impulse

Lagrange multipliers or adjoint variables

ill : magmtudeo__x

li _ = magnitude of

Component of ._. parallel to _R

Component of k pe__endicular _to_R

Time

Time at end of first thrust period

Time at beginning of second thrust period

vi
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The method used to solve the two point boundary value problem of the

calculus of variations is one where the decision functions are such that all the

trajectories being used are extremals [ 1]. In addition to the state variables,

that appear in the equations of motion, there are a number of adjoint variables

or Lagrauge multipliers that satisfy additional equations for the optimization of

the given system. The boundary conditions for the adjoint variables define the

natural end-point conditions of the state variables. This natural end point, in

general will not be the desired end point. A differential correction scheme

provide the means of obtaining another optimum trajectory, the natural end

point of which will be closer to the desired end point [2].

The equations of motion of the vehicle in the gravitational field of a single

body subject to thrust are as follows:

= _]_ + k T (i)
r3 m

t B •m (tB) = m (tA) + m dt

%
ir

where m = - : and T is a unit vector parallel to the direction of thrust.
C

The optimum decision functions are determined with the help of the

Lagrange multipliers_, _, and (7 which satisfy the following equations

I _ 3u(_, R) R+ - -
- r 3 r 5

 ,dt
(%) = _ (tA) ÷ tA

(2)

(3)

(4)
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where
• k_

m

The thrusting program is determined by the sign of the switching function

S, which is given by

>0 k=k

S=(X____(_) maxm c < 0 k = k (5)
min

The direction of the unit thrust vector T is given by the direction of the

Lagrange multiplier ),

k

T=T (6)

The natural end point if reached when

(tF)= 1 (7)

The problem is to generate a set of initial values of the Lagrange multi-

pliers such that an optimum orbit can be computed, where the natural end

point matches the desired end point. This is accomplished by obtaining a first

estimate of the initial values and improving these by using a differential correc-

tion scheme•

One of the requirements necessary for a rapid convergence of the differ-

ential correction scheme is that the first estimate of the initial values of the

Lagrange multipliers be reasonably close. The following is a method for ob-

taining a first crude estimate of the initial values of the Lagrange multipliers.
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INITIAIJ VALUES OF LAGRANGE MULTIPLIERS

First Method

A first estimate for the initial values of the Lagrange multipliers can be

obtained by making the following assumptions about the trajectory.

(a) Two burning periods are required to accomplish the optimum tra-

jectory, one occurring in the time interval t o to t 1 and the other

in the time interval t 2 to tf. During the time interval t 1 to t 2 the

vehicle is in a coasting region.

(b) The time intervals in the thrust regions are so small that A V (to)

and AV_(tF) are obtained by solving the "two-impulse orbit transfer"

problem, where

_v_(to) = v_(t1) - v_(to)

Av_(tf) = v(tf) - v_(t2)
(8)

(c) In the regions of thrust the gravitational force may be neglected.

If in addition we assume that the thrust direction is fixed the differential

equations for the state variables and the Lagrange multipliers, within the burning

region reduce to

=_ c_ T (9)
m

'_ = 0 _10_

where

t

(r (t) = (r (tA) + _t A
_dt (11)

_= _ c.____ (12)
2

in

3
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and

m (t) = m(tA) + (t- tA)

In the burning regions the thrust vector is in the direction of AV_.

from Eq. (6) we have

(13)

Therefore

AV
w

=x _- (14)

In the coasting region, m and a are constant. Thus, it follows that

(_(tl)= _ (t2) (15)

m(tl) = m(t2) (16)

For the computations of the initial values of the Lagrange multipliers, one

proceeds as follows:

First Eqs. (9) and (10) are integrated in the two burning regions to to t 1

and t2 to tf, resulting in

AV o
---- (17)m(tl) - re(to) e - c

(_v o +_vf)

m(tf) ffi re(to) e - c (18)

r(tl) ffi_(to) -- constant (19)

X_"(t2) ffi X"(tf) = constant (20)

X_(tl) = X_(to) + (tl- to) k" (to) (21)

X_.(tf) = __(t2) + (tf - t2) X_"(t2) (22)

where the time spent in the two burning regions is computed by using Eqs. (13),

(16), (17), and (18), and is given by

4
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AV
"" 0

m(to)(e c - 1)

(tl - to) = rh (23)

AV o AVf

m(to) e c (e c -1)
(tf- t2) = rh (24)

From the assumption that the thrust direction is fixed during each burning

interval it is evident that _ and X are in the same direction. Therefore only the

magnitude of k and X need be considered, i.e. k and X.

At the transition times t 1 and t2 the switching function must be zero. Thus,

X(tz) _ (tl)

m(tl) c
(25)

and

_. (t 2) a (t2)

re(t2) C
(26)

It can be shown that by integrating Eq. (11) in the two burning regions and

making use of Eqs. (12) through (26) one forms the following three independent

equations with five unknowns, i.e., a(to), k(to) , k'(to) , k(tf) and X(tf)

AV
C _ 0

m(to ) or(to) - _ ):(to)= 0 (27)

'W__o ,xv_
O

ce +c Q_;_) )_(tf)m(to ) k (tf)

avf
+ "--'='--m -e _ + AVf =I

AV^
U

°_
AV_

A

c - 1)k (to)

(28)
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AV
_._..? AV o AVf

c IX -1 _ -_---) ,,____e---E-- )e (to)-x(tf)j+ _ -e - x(tf)= 0 (29)m(to) m

t
0

By making use of the transversality condition X" 1t - ):. V + an_ = 0 at times

and tf one can obtain two more equations.

_V(to). A V_o
-):(to)-_v

O

crh

_-_o ) k (to) + Cr(to) l_ = 0 (30)

Avo+Avf
v_(tf).A_vf c_ c

- ): (tf) AVf m(to) e X (tf) + rh = 0
(31)

Eqs. (27) through (31) constitute five equations with five unknowns. The

solution of this system of equations is given by

(AVo + AVf
m(to) C A-Vo

(to) = ---_--- e A_-
0

(32)

(to)= 0 (33)

( AVo + AVf)

e
(r (to) = e (34)

(Avo+Avf)
m(to) - c A_Vf

_(tf) = m e _ (35)

(tf) = 0 (36)

It is of interest to note that the magnitudes of _ at the initial and final times

are equal and directly proportional to the mass at the final time. In addition, the

value of Cr is also proportional to the final inass and may be expressed as

m(tf)

(7 (t) = m(t'---T (37)
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Second Method

An approach for obtaining a better first approximation is to remove or at

least "relax" some of the assumptions made in the first method. More specifi-

cally, instead of completely neglecting the gravitational force in the regions of

thrust it can be assumed that the gravitational force has a constant value of

-p__f
-DR-°_3 in the first region and _ in the second region.

r ° rf

In addition, we assume that the direction of the total acceleration in the

two regions of thrust is parallel to the vector AV__o and A_Vf, respectively. This

implies that the direction of the thrust is not fixed.

It is clear that in the region of thrust the vector k__lies in the plane formed

by the vectors _R and A_V. It is most convenient to resolve __ into components

along the vector R_and normal to it. These two components are designated as

).£ and X17, respectively.

The differential equation for k__can now be written as

= 2u x£ (38)_ y3

_t7 = /_ _, (39)r3

The solution to Eqs. (38) and (39) is _iven by

_'_ = )'_(to)cosh_ 2-'_3 t+_2_ X_ (to)sinh_2-_3 t
r r

3

_=_t(t°)c°s _/r 3 J_t7(to)sin _/r3

(40)

(41)

Since the intervals of thrust are assumed to be of short duration it is per-

missible to approximate Eqs. (40) and (41) in the regions of thrust by neglecting

the second order terms of a Taylor series expansion, i.e.,

7
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X_(t)_ _(to) + (t- to) X (to) to <t <tI (42)

X(t)__ (t2) + (t- t2) X (t2) t2 _t _tf (43)

Similarly, one can approximate )_ in the regions of thrust to the same order of

accuracy.

X_(t) _ 2_ (t- to)X_ (to) + X£ (to)r3

- -_- (t- X_X,(t)_ r3 t o ) (to)+X,(to)

to <t <t I

(44)

(45)

X_(t)_ 2r-_3(t-t2)X_(t2) +X£ (t2)

XW (t) _ - r_3 (t- t2)X W (t2) + _ (t2)

t2 <t<tf

(46)

(47)

The procedure for obtaining the initial values of the Lagrange multipliers

is now the same as in the first method except that Eqs. (19) through (22) are now

replaced by Eqs. (42) through (47).

C ONC LUSION

A set of approximate initial values of the Lagrange multipliers have been

derived. In addition, a method for obtaining a better first approximation has

been outlined. It should be pointed out, however, that as one attempts to obtain

these improved first approximations in the manner outlined, the algebraic mani-

pulation of the expressions involved become more cumbersome and additional

approximations may be needed.

8



|

I

!

!

le

e

REFERENCES

Richman, J., "Two Point Boundary Value Problem of the Calculus of
Variations for Optimum Orbits", Progress Report #2 on Studies in

the Fields of Space Flight and Guidance Theory NASA-MSFC, MTP-
-AERO-63-12.

Nomicos, G. "Differential Correction Scheme for the Calculus of

Variations". Progress Report #4 on Studies in the Fields of Space
Flight and Guidance Theory NASA-MSFC, MTP-AERO-63.

!
I
!
l
I
le
1

I
e
|



|

t
I

I
I

I

I

I
I
I
I
ie

I
i

I
!

RAC 720-'2

(A_RD-$gii-451)
19 June 1962

First Scmi_mnual Report

THE HAMILTON-JACOI3[ FORMULATION OF THE

RES'FRICTED THREE BODY PROBLEM IN

TERMS OF THE TWO FEfED CENTER PROBLEM

P_C 720-2

Research Regarding

Guidance and Space Flight Theory
Relative to the _Xendezvous Problem

Contract No. NASS-2605

REPUBI.IC A\'!A'FiON ('Oll:_OP.kTION

Farmingdale, L.I., New York



This document is the First Semi_nnu:_l Report prepared by Republic

Aviation Corporation uader NkSA Contract No. NASb-2605, "Re search Re -

garding Guidance and Space Flisht. Ti-.eory _t_'"!:xivc to the Rendezvous Prob-

lem." The contract was h_itiatcd and is monitored by \V. Miner and R. IIoclkcr

of the Acroballistics Laboratory, George C. Marshall Space Flight Center.

The document will appear in slightly diiicrent format as a part of PROG-

I',iLSS R!£PORT NO. 2 ON STUDLES IN THE F!EI,DS OF SPACE FLIGHT AND

i

!

!

!
II

I
l,O

i

l

I

l

C;U,: .-\NCL TIIIiORY,

Space Flight Center.

sponsored by the Aeroballistics Division of the Marshall

The report was prepared by Dr. Mary Payne and Mr. Samuel Pines o£

Republic's Applied Mathematics Section, Applied Research and Development

Center. The authors wish to express their appreciation for many helpful

discussions with Mr. Elie Lox_%, and Dr. George Nomicos and they especially

want to thank Dr. John Morrison whose comments, from the inception of tJ_e

problem, have been most illumiaatLng.

iii



I

I

I
I

I

I

I
I

I

I
i
I
i •

I

I

I

I

Section

I

II

Ill

IV

V

VI

TABLE Ot," CONTENTS

Title

FOREWORD .................

NO TA TIO N .................

SUMMARY .................

INTRODUCTION ...............

THE RESTRICTED PROBLEM ..........

SOLUTION OF TIIE TWO FLXED CENTER PROBLEM -

DETERMINATION OF TIIE GENERATING FUNCTION •

ACTION AND ANGLE V.%I{IABLES ........

CONCLUSION ................

REFERENCES ................

iv

iii

V

1

1

3

12

20

25

29

32



I

I

I

I

I

I

I
I

I

I
!

I

I

!

I

l

]

R
2

m

R

F

i

r

#

#'

P

TY

qi

9i

Pi

P.
1

NOTATION

Position vcctoz of the vehicle relative to the barycenter in a coordinate
system g_xed in _.pace

Position vector of the vehicle relative to the earth

Position vector of the vehicle relative to the moon

Position vector of _he vehicle relative to the barycenter in a rotating
system

Position vector of the vehicle relative to the midpoint of the earth-
moon line

Magnitude of R 1

Magnitude of R
2

Ang"alar velocity vector of earth-moon system

Magnitude of a;

GravitationaI constant times mass of the earth

Gravitational coastant times mass of the moon

Lagrangian function

Momentum vector

Hamiitonian function

Generalized coordinates conjugate to P i

Generalized coordinates conjugate to P.
1

GeneraIized momenta conjugate to qi

Generalized momenta coniugate to Qi

V
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t

H 1

i{2

h

W

a.

i

\;T .

i

i

qi )

q2 )

0

c

Pi )

p )
o

× )
Y )

z )

R2(ql )

S 2 (q._)

Time-dependent- "' ,' _-oelloi 3. _11,o ','_llC tion

Time

I_'tcgrable part of the ttamiI_onia_

Disturbing function

Energy" constant for lI 1

Time-independent generating function

Action variables

Angle variables

Frequencies for two fixed center problem

Elliptic coordinates )
) prelate spheroidal

) coordh_atcs

Angle measurea arom_d x <u_:is )

Italf the distance between earth and moon

Momenta conjugatc to prolate spheroidal coordinates

Rectangular coordinates in a system with earth at (e, o, o), moon

at (-c, o, o) and t2 in the z direction

Angular momentum about the line of centers in the two fixed

center problem

Third dynamical constant of motion of the two fixed center problem

Fundamental quartic associated _-ith ql

Fundamental quartic associated with q2

Parameter in terms of which coordinates and time of the two fixed

center problem are given
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r.

1

S°

1

n°

1

m°

1

F.(u)
1

o. (u)
1

K 1

t( o

Qh

Qa

Q3

,J

o

Roots of R'(ql).= 0

o

Roots of S'(q2 ) - 0

Coefficient of linear tcrm in qi contribution to time a.s a ftmction
of u

Coefficient of linear term in qi contribution to _pas a function
of u

Periodic term in time aMe to qi

Periodic term in O due to qi

Quarter period of ql elliptic functions

Quarter period of %2 elliptic functions

Coordinate conjugate to h

Coordinate conjugate to cz

Coordinate conjugate to
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FINA L REPORT

CONTRACT NO. NAS 8-2605

A. CELESTIAL MECHANICS

In this study perturbation techniques using the classical Ilamilton-Jacobi

theory have been developed for application to the restricted three body problem.

The unperturbed trajectory is based on the solution of the two fixed center prob-

lem as outlined in the First Semi-annual report RAC 720-2, submitted in June

1962.

Various approximation methods have been developed for which the initial

position and velocity of a vehicle are known. The derivations have been carried

out in a coordinate system rotating about an accelerated origin, which is sel-

ected so as to minimize the effects of the non-integrable terms in the perturba-

tion equations. This procedure is presented in the Second Semi-annual report

RAC 720-3, submitted in December 1962.

The various approximation methods differ in the manner in which the initial

conditions are modified.

The position and velocity at time t o are computed relative to the earth in

the fixed system for two of these methods as follows:

1) Position and velocity at time t o in the fixed system are un-
modified.

R ' and velocity ' at time to in the fixed system2) Position _ lo -1tlo .

are computed from the unmodified conditionsRlo and Rlo as

as follows :.

'E ]R l=-lo -a.lo + , L(t) -L(o) + h(t) -A(o)
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, u ,--io = -RIo _z+ LM

in which L is the vector from earth to moon, L is the velocity vector of the

moon relative to the earth and the vector A is given by the formula

A=(__L (t) +yL(t)

and is determined from initial and final positions associated with t o and t,

respectively, so as to minimize, in a least square sense, the initial and final

contribution of the non-intcgrable parts of the perturbation equations. In the

above methods the earth and moon are considered fixed in their final positions.

A second perturbation theory has also been formulated in an inertial coor-

dinate system, where the fixed positions for the earth and moon have been select-

ed so as to reduce the effect of the non-integrable terms in the perturbation

equations,

Small variations in the parameters _, y, 5, and _ lead to modifications

of initialconditions which would improve the approximation of the restricted

problem by the two fixed center problem. This theory is contained in the Third

Semiannual Report, RAC No. 720-5, submitted in August 1963.

The application of the qualitativetheory of differentialequations to prob-

lems in celestial mechanics has been explored and methods for analyzing period-

ic solutions of differential equations have been investigated with a view towards

obtaining qualitative information about the motions in a gravitational field of

several bodies.

The application of the variation of parameters to the polar oblateness

problem has been investigated. The following set of two body parameters and

their associated perturbation equations have been derived:

1) The perigee vector P(t) of the instantaneous Kepler orbit

2) The tangent vector Q(t) to this orbit at perigee

3) The time of perigee passage c7(t)

A Gcheme has been devised to evaluate the first order perturbations on

the motion of a space vehicle caused by polar oblateness of the earth. The

2
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parameters _P(t), _Q(t) and or(t) have been expressed in terms of the state var-

iables, R a_nd R of Kepler motion and the perturbations to the Kepler orbit re-

suiting from the application of a general force __Fhave been derived. The gener-

al perturbation equations have been used to develop a method for evaluating the

orbital perturbations of a space vehicle due to the polar oblateness of the earth.

It has been found that the terms of the equation with long periods can be written

in closed form•

A modified Poisson method has been used to obtain the first order solu-

tion to the problem. The modification of the method is introduced in order to

eliminate the occurrence of secular terms which cause a rapid deterioration of

the solution.

The approximate solution is expressed as a function of true anomaly and

some analysis of second order theory suggests that difficulties with particular

initial conditions may be avoided. The details of this derivation are given in the

Fourth Semi-annual Report, RAC 720-7, submitted in February 1964.

B. CALCULUS OF VARIATIONS

In this study a differential correction scheme has been developed for the

improvement of the approximate initial values of the adjoint variables (Lagrange

multipliers) so that an integral functional satisfying the desired boundary condi-

tions is optimized. The adjoint variables satisfy a system of equations that are

developed by applying the classical methods of the calculus of variations, proper-

ly extended, or Pontryagin's maximum principle.

A general transition matrix has been derived for the variations of the end

conditions caused by the variations of the initial values of the adjoint variables,

including the variations of the thrusting program and of the final time of the

nominal optimum trajectory.

An iteration scheme has also been outlined for the convergence of the

differential corrections to the desired end conditions.

A method has been established for obtaining approximate initial values of

the Lagrange multipliers in the "Two Point Boundary Value Problem of the

3
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Calculus of Variations".

made:

In this method the following assumptions have been

1) Two burning periods are required to accomplish the

optimum trajectory.

2) The time intervals in these two regions of thrust are

small so that the changes in velocity can be obtained
from the solution to the "Two-Impulse Orbital Trans-

fer" problem.

3) In the regions of thrust the gravitational force may be

neglected.

In order to improve this method, the last assumption has been modified

and the gravitational acceleration is not neglected but is regarded as a constant

vector in each of the burning regions.

The details of the derivations are incorporated in the Second, Third and

Fourth Semi-annual Reports. RAC 720-4. 6. and 8 submitted in December 1962.

August 1963. and February 1964. respectively.

4
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SUMMARY

A differential correction scheme is developed for the improvement of the

approximate initial values of the adjoint variables so that an integral functional

satisfying desired boundary conditions is optimized. The adjoint variables

satisfy a system of equations that are developed by applying the classical methods

of the calculus of variations, properly exteaded, or Pontryagin's maximum principle.

Approximate initial values for the adjoint variables are assumed.

A general transition matrix is derived for the variations of the end con-

ditions caused by the variations of the initial values of the adjoint variables,

including the variations of the thrusting programand of the final time of the

nominal optimum trajectory. An iteration scheme also is discussed for the con-

vergence of the differential corrections to the desired end conditions.

I
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SUMMARY

A differential correction scheme is developed for the improvement of the

approximate initial values of the adjoint variables so that an integral functional

satisfying desired boundary conditions is optimized. The adjoint variables

satisfy a system of equations that are developed by applying the classical methods

of the calculus of variations, properly extended, or Pontryagin's maximum principle.

Approximate initial values for the adjoint variables are assumed.

A general transition matrix is derived for the variations of the end con-

ditions caused by the variations of the initial values of the adjoint variables,

including the variations of the thrusting program and of the final time of the

nominal optimum trajectory. An iteration scheme also is discussed for the con-

vergence of the differential corrections to the desired end conditions.
oO
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INTRODUC TION

In the problems of the calculus of variations, a system of partial differ-

entialequations must be solved with specified boundary conditions. In addition

to the state and control variables thatappear in the equations of motion, the

inequalitiesof constraints, and the functionalthat should be optimized, there

is a number of adjoint variables that satisfyadditional equations for the optimi-

zation of the given system. These equations are derived by the application of

the classical methods of the calculus of variations, properly extended, or from

Pontryagin's maximum principle [13, _2].
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When some approximate values of the adjointvariables at the initialtime

to have been calculated, then, by numerical integration of the above systems of

equations, an optimal solution is obtained that does not satisfy the desired end

conditions. In this paper, a differentialcorrection scheme is developed that will

improve the approximate initialvalues of the adjoint variables so that the optimal

solution will satisfy the desired end conditions. A general transition matrix is

derived for the variations of the end conditions caused by the variations of the

initialvalues of the adjoint variables, including the variations of the thrusting

program of the nominal optimum trajectory and the variation of the finaltime.

An iterationscheme also is presented for the convergence of the improved

values of the adjoint variables to those of the optimum solution.

First, the general equations of the state variables, used mostly as

constraints, are given, together with the equations of the adjoint variables.

Second, the variational equations for the above systems of equations are

derived, and an application to the problem of minimizing the fuel of a space

vehicle flying between two given boundary points is given as an example.

Third, a umeren_, correction o_,,_,,,_ Is .._..,_.._-_..__"r._ t h_ i_mpro,;ement of

the approximate initial values of the adjoint variables, and an iteration scheme

is presented for the convergence of the improved values of the adjoint variables,

so that the optimum solution will satisfy the desired end conditions. Finally,

conclusions and recommendations are presented for the application of this

scheme to the actual flight of space vehicles.

1
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FUNDAMENTAL SYSTEM OF EQUATIONS

State Variables

The motion of a vehicle is characterized by the vector variable x(t) belonging

to the vector space W at any instant of time t. It is assumed that this motion is

controlled by a control vector u(t).

The fundamental system of equations of state variables is given by

_i(t) = fi(__(t),u(t)) (i = 1,2,... n) _:: (1)

where _x(t) is an n-dimensional piecewise differentiable state vector, and u(t) is

an r-dimensional piecewise continuous control vector belonging _o an arbitrary

control region U that is independent of time. The functions f. are defined for
1

x g_W and for u EU and are assumed to be continuous in the variables x(t) and

_u(t) and continuously dLfferentiable with respect to x(t). For a certain admissible

control u(t), the motion of the vehicle x(t) is uniquely determined.

The integral functional to be optimized is

T

x°(T) = ft fo (.x(t),_u(t))dt
O

The necessary conditions for the optimum control vector u(t) of Eq.(2) are

formulated for fixed boundary conditions of the state variables X(to) and x(T)

and for free end time T.

(2)

Adjoint Variables

For the optimum solution of Eq. (2), another system of equations is con-

Z (t) = (yo,Yl, ...yn) = (Yo' y) which is an (n+l)-dimensional continuous vector,

and is given by

n

afj (_ (t),_u(t))
Yi (t) = - _, 5 x. yj (t) (i = 0, 1,... n) (3)

j=0 t

!
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The Hamiltonian _(x(t), u(t), _,(t) ) is defined by

n

= _ Yi(t) fi(x(t),u(t))

i=0

and the systems of Eqs. (1),

_i(t) - 5Yi

Yi (t) 5x.
1

(2), and (3) correspond to the Hamiltonian system

(4)

(5)

I

I
I

I
I
I

I
I e

I
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i

Pontryagin's maximum principle and transversality condition give, for

optimal Xo(T), the function _(x(t),u(t), _y(t) ) of u(t) belonging to U attains its

maximum at the point _u(t), i.e.

(x(t),u(t),_y(t)) sup v_'(x(t),u(t),y(t) ) = 0
udU

yo( _ < 0 and Yk(T) = 0

(6)

where the subscript k corresponds to the subscript of the state variables for

which the terminal value Xk(T ) is free. For most of the engineering applications,

we have Yo _ 0, which is normalized to Yo = -1.

(L)
The Lagrangian multipliers A_(t) of the classical calculus of variations are

related to the adjoint variables y(t) by the relationship

(L) 5fo(_X(t),__(t),u(t))
ki(t) = b_. Yo (t)+ Yi(t)

i_O i

_)

if the time t appears explicitly in the system of functions f or fo' then it always

can be transformed to an autonomous system by introducing an auxiliary state

variable that is defined by

Xn+l (to) = 1 with Xn+ 1(to) = t o (8)



!

!

!

!
!

Example

For a space vehicle powered by a throttled engine and flying in the

gravitational field of only one attracting body, the system of equations of the

state variables, i.e., Eq. (1), reduces to

:v fl,f2,f3

___-_ _z3-R+ u(t)em- f4'fs'f6
r

rh= _ u(t)
c f7

(9)

I

where e is a unit vector in the direction of the thrust, and u(t)

variable belonging to the range 0 _ u(t) < K.

I
Xo(T ) = I T

I _t O

with f =-6a= u(t} .
O C

!

I

I

I

I

I

is the control

For minimizing the fuel between X(to) and x(T) with free end time, the

integral functional to be optimized, i.e., Eq. (2), becomes

fo(X(t), u(t) )dt

The system of the adjoint variables, i.e., Eq. (3), reduces to

3}o(t ) = 0

R'_

r r

__(t) = - _v

" Ii/'1-_

Y7(t) = .-_ (_._e)
m

V::I

(10)

(ii)

I

4
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The maximum principle and the transversality conditions of Eq. (6) become

_= supYk +_ .v +x. (5_ +u-_ _-_=o
u£U = Y°f° - m e)-Y7 c

r

Yo(t) = -1 and Y7(T) = 0

(12)

where f =
O C

From Eq. (1), it is obvious that _//e and that the switching function for

u= 0 or u= K is defined by

S(t) -
Ikl Y7 -Yo x,_.^

m c C" (13)

when u(t) = f" K (max)
0 (rain) respectively.

VARIA TIONA L EQ UA TIONS

In this section, the variational equations of the optimum trajectory of a

space vehicle are derived. The formulation of these equations is required for

the application of the differential correction scheme that is developed in the next

section.

The application of Pontryagin's maximum principle for the solution of

optimal problems yields additional information for the synthesis of optimal

controls. Making use of this principle, the system of Eqs. (1) and (3) may be

rewritten in the following general form.

r_"(t) _

[ f_ (x,y,u)

l g L_y ,u)

(14)
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The variations of this system are obtained by

_.!(t) = F(t) ZX!(t) + a_h(t) (15)

where the matrix F(t) and the vector Ah(t) are given by

F(t) =

z__(t) =

bf _f

___x _y

b g _g

bx by

I
-- f

t
!(u + __u)- ft_)

g_ +au) -gt_)

(16)

Transition Matrix

The fundamental solution matrix for the homogeneous part of Eq. (15), i.e.,

_' (t) = F (t) ¢ (t)

with initial conditions ¢(to, to) = I (unit matrix), is the transition matrix ¢(t, to)

of the system. From the properties of the fundamental solution matrix and the

transition matrix ¢(t, to), we obtain

!tt,r(t)= 4_(t,to)_!(to)+ 4_(t,r) __h(r)dr (17)
_t

0

which is the solution of the non-homogeneous Eq. (15).

In the example of the powered space vehicle flying in the gravitational field

of one attracting body, Eq. (17) reduces to

N

Lir_(T)= ¢(T, to) __r(to)+ _ ¢(T, tj)_h(tj) _tj (2.8)

j=l

6



i where tj optimum nominal trajec-is the time at which the thrusting program of the

the approximate values of initial conditions r(to) or
I tory with switches "on" "off"

and _r(T) gives the of nominalduring the time interval t o < tj < T, deviations the

end conditions from the desired end conditions, i.e.

l k. r (T) = | l

- .LA..y(T)

I ]_ _/ Xx(T' t°)Xy(T' tc_

| _y(T) ¢i(T) t Y "T t " I

,' L_ _] YI (T't°) y_ ' o)_

- 1 Vox,t ,7
' _h-(tj)=_i.o [; ; ]=- i; ]

l (tj-() - tj+ ¢) 5 tj)

l Because the boundary conditions of the state variables at the initial time t o

are given, we have Ax(to) = 0, and Eq. (18) becomes (see Fig. 1)

I N

Zkr(T) = 4,(T, to) Ar(t o) - ) ¢(T, tJ 6r" (tJ At_ (20)

- - j-'--1 ' - ' J!
or •

= - {21)

l L_'__JL_x _ _L_(t°)_ j=l L_°'_°'jL°_

l where X = X(T, to), and X (j) = X{T, tj).

I
7

i
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From Eq. (21), we get

N

A_x(T) = XyAy(tc_ -> [Xx(J)6__(tj)

j=l

N

j=l

+ Xy (j)52(tj)_ At.]

+b o)6_(_j)],_.,j

(22)

(23)

Thrusting Program

In the formulation of the variationalequations of the optimum nominal

trajectory, the time variation Atj of the optimum thrusting program has been

included where t. is the time at which the thrust switches "on" or "off' and the
J

switching function of the nominal trajectory is zero, i.e., S(tj)= 0. The time

variation Atj is calculated from the variation of the switching function _S(tj+Atj)

for which

S(tj +Atj) + _S(tj + Atj) = 0 (24)

From the linear expansion of Eq. (24) we get

(tj) __tj =-- 5r5-_S___r (tj +/_tj) (25)

5S (25)
Because Ar (tj + Atj) =" A_r(tj) + A_r (tj) Atj and _ Zk__(tj) = 0, Eq.

becomes

5S __r(t,)
S(tj) At. :" - 5--_-

J __ J

(26)

Expanding the variation _,r(tj) from Eq. (20), we get

i<j

Ar(tj) = O(tj,tc) _r(tc) ->. _(tj,ti) 5r(t i) At i
i=1

(27)

I



I
rl

I

I

I

!
I

I

I
I

I

I
I0

I

I

I

I

Atj = --:J-- 5S(t_ i<j

- i=I
¢_-(tj, ti) 8_ (ti) At i

and, in terms of the variations Ay (to) , it becomes

_t.- _ F_s(t) _s(ti)
J S(tj)" [-__x (tj) 5 (tj, to) + by (tj----_

.=_

Yy (tj, to) j A I (to)

1
+ --¢----

S(tj)

5S(tj)i_<jr

i-_l '_xx (t j, ti) 5__(ti)5x (t j)
+ Xy(tj, ti)6_(ti)1 At i

i<j

_(tj) 8y(tj) i=l
+ Yy(tj, ti) 5_(ti)!z_t i

('28)

(29)

From Eq. (13) for the switching function S(t), we find that

S(t) - I k [ Y7 - Yo S(t) - A"
m c mlk I

5S(tj)

5x(tj)
0, 0, 0, 0, 0, 2}

m

_S(tj) j Y4 Y5 Y6

8y(tj) = ]'m_-k] ' m l kl ' m !kl
, O, O, O,

(30)

DIFFERENTIAL CORRECTION SCHEME

Correction Scheme

In this section, a differential correction scheme is developed for the im-

provement of the approximate initial values of the adjoint variables so that the

optimum solution of the problem can be found. The variations of the nominal

optimum trajectory of the space vehicle, calculated for the approximate initial

values of the adjoint variables, have been derived previously.

9
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Making use of Eqs. (17), we solve for _,r(to) if we know the variation

Ar(T) at the terminal time T. In the example of the powered space vehicle we

derived Eqs. (22) and (23) for the variations of _x(T) and P.y(T) caused by the

variations of the adjoint variables _(to) at the initial time t o and the variations

At. at the time t. of the thrusting program, which corresponds to the optimum
] ]

nominal trajectory for the approximate adjoint variables.

Free End Time

In the case of free end time T, a variation in the terminal time also is

taken into consideration, and, making use of Eqs. (29), we find that

I

I

I
I

I
I

I
le

I
I

I

A x(T) = [i_ Ay (t_ +_x(T) AT (31)

£_y(T) = [_] Ay (to) +_(T) AT

Separating the seventh row of Eqs. (31) and (32), we get

_(_ :E_ _ (to)+i(_AT

(32)

(33)

AY7(T)= C_7 Ay(t o) +Y7(T)P-T (34)

where Eqs. (33) and (34) are of the form

[6 ×i]= [6x7] [7xi] + [6xi]'[ixi]

[ixi]=[1×7] [Txl] +[ixl][ixl]

respectively, [ F ] represents the first six rows of IF ], and f_7 represents the

seventh row of [_ ] .

For the solution of the system of Eqs. (33) and (34) for Lky(to) and AT from

the deviations A_x(T) and AY7(T ) = 0, we need one more relationship, and this is

obtained from Eq. (12), i.e.

7

_(x, u,,_) = _, yj. fj(t) - fo(t) = 0 05)

j=l

10
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Taking the variation of _(t) at time t o, we get

7 7

fj(to) z_J'j(tc) + _ yj(t o) Afj(to)-Afo(t O)

j =1 j=1

= o (36)

Because Afj(to) = 0 and Afo(to) = 0 ff the variation of the switching function

AS(to) does not change the sign of S(to), Eq. (36) becomes

7

)_ fj (to) A yj (to) = 0

j=l

(37)

or

u (to)

V (to) • A_v(t o) + _(t o) • _(t o) c- -- AY7(to) = 0 (38)

Thus, combining Eqs.

unknown variations that are given by

0

0

(33), (34), and (38), we get eight equations with eight

= _7

L __(tf

__(_

Y7(T)

0

- F_(tQ

AT

(39)

Solving for £Y(to) and AT, we find that

h = n 7 }}7(T)

• T
x(to)

-i _._(T)

0

0

(40)

Iteration Scheme

For the calculation of the optimum trajectory of a space vehicle, the

differential correction scheme described in this section is applied, and the

variation of the adjoint vector _Y(to) at the initial time to, as well as the varia-
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tion of the final time AT, are derived to match the desired conditions at the final

time T in space. Making use of the corrected adjoint variables Yl(to) =__(to) + A}_(te),

a new optimum nominal trajectory is computed by integrating the system of equations

of the state and adjoint variables, i.e., Eqs. (9) and ill), by making use of Eq. (13)

for the optimum thrusting program as described previously. Because the differential

correction scheme has been derived for linear variations of highly nonlinear equations,

it is expected that there still will be a discrepancy between the desired and the new

computed values of the end conditions &Xl(T1), where T 1 = T + K T.

In general, successive iterations generate corrections AYk(tc_ to the adjoint

variables at time t o from _Xk(Tk) such that

k

Yk+l(to) =Yk(to) + AYk(to) =y(t¢) + _ _Yi(to) (41)

i=D

which, in turn, gives end conditions with deviations __Xk+l(Tk+l) from their de-

sired values, and

k

Tk+ 1 ; T + _ _T i (42)

i=0

This iteration scheme converges to the desired end conditions of the state

vector, provided that the deviations are within the linear range. Departure from

the linear range will be indicated when the deviations of the computed nominal end

conditions from the desired end conditions Ax I(T1) are comparable to or exceed

the deviations A_c_(T). In this case, each step of the iteration scheme described

above contains a sub-iteration carried out on a parameter _'k introduced as a

factor multiplying the deviations __Xk(Tk). Thus

_-Xk (Tk) = Tk & Xk(Tk) (43)

* (to)From _x k (Tk), we obtain the correction Ayk*(to), which is added toYk*

for the kth estimate of the adjoint variables at time t o. The sub-iteration consists

of the determination of a value of }'k (0 < 7'k< 1) such that the deviations __Xk+l(Tk+l)

computed from the corrected adjoint variables, i.e.

12
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/{k+l(to ) =Yk(t_ + AYk*(to) =_Y(tc) + _ AY i (t o)

i--O

(44)

are comparable to or less than the deviations AXk(Tk). This procedure is continued

until the linear range is reached for which 7k = 1 and the iteration scheme converges

to the desired end conditions.

It should be noted that the same procedure is followed when parameters other

than the state variables are specified as end conditions. Of course, these para-

meters must be expressible as functions of the state variables.
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CONCLUSIONS AND RECOMMENDATIONS

A differential correction has been developed for the improvement of the

approximate values of the adjoint variables so that the optimal solution of the prob-

lems of the calculus of variations is obtained. The mathematical analysis for the

differential correction scheme for the optimum trajectory of a space vehicle with

minimum fuel consumption between fixed boundary conditions has been presented.

The method developed relies on the variations of the nominal optimum trajectory

of the space vehicle calculated for the approximate initial values of the adjoint

variables, which are assumed to be given. Techniques for the calculation of these

approximate values are not considered in this report.

A general transition matrix has been derived for the variations of the end

conditions caused by the variations of the initial values of the adjoint variables,

including the variations of the thrusting program of the nominal optimum trajectory

and the variation of the final time. An iteration scheme also has been discussed

for the convergence of the improved values of the adjoint variables to those of the

optimum problem satisfying the desired end conditions. In addition, a method for

the case of variations beyond the linear range has been outlined.

This program will be highly useful for the determination of optimum space

missions and for optimum orbit transfer for intercept and rendezvous of space

13

I



I

I

I

I
I

vehicles as well as for optimum navigation and guidance of a space vehicle.

Further work in this area is readily suggested. First, techniques should be

developed for the approximate initial values of the adjoint variables that are

used for the optimum nominal trajectory. Second, this correction scheme

could be extended readily to optimum problems with more general types of

end conditions than those considered in this report. Finally, a more general

differential correction scheme is required for the optimum pursuit of a powered

spacecraft, which would involve a statistical-control scheme for the probability

law of a randomly moving point.
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APPENDIX

VARIATIONAL PARAME TERS

For the calculation of variations of the optimum space trajectories, there

is a general matrix introduced that relates the variations of the state and adjoint

variables at time t to those at time t . This matrix, called the general transition
o

matrix, requires the computation of the partial derivatives of the state and adjoint

variables at two different times, i.e., t and T, and relates their linear vari-
o

ations at these times, including the optimum changes of the thrusting program.

When the thrust is "off, " the system of equations for the adjoint variables

is "adjoint" to the system of equations for the variations of the state variables,

which, in this case, is homogeneous, and the transition matrix of the state variables

is used for the calculations of the adjoint variables during the coasting intervals

of time, i.e., ti<t<ti+ 1 . In this case, the transition matrix of the state

variables X (ti+ 1, ti) is found from the corresponding Kepler problem, and it is

expressed in closed form from the solution of this problem.

The variations of the state variables and the values of the adjoint variables

for the coasting interval are given by [3 ].
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where

and

A_ (ti+l) = )_(ti+ l, t i) A_x(t i)

__(t) T

i(t)T

= (Xl,X2, x3,x4, x5,x6)

= (yl,Y2, y3, y4, y5, y6)

5_x(ti+ 1 )

X(ti+l' ti) - b_(ti )

(45)

(46)

(47)

The use of the conventional state variables _(t), which are position and velocity

vectors R and 1_ in cartesian coordinates, has the disadvantage that all of their ele-

ments have secular terms that vary rapidly with time. If, instead of the conventional

state variables, other parameters are used as state variables, the resultant matrix

might be simplified considerably. For example, consider the following parameters

and their variations:

z_c_1 Rotation of R about 1_

A_2 Rotation of l_ about R

A_3 Rotation of both _R and I_ about H

_4 Change in cos _,_), keeping v and R constant

_5 Relative change in the semimajor axis Aa/a,
keeping R and l_/v constant

u
Relative change in the magnitude of the position
vector (_r/r), keeping R/r and _/v constant.

The transition matrix corresponding to the above parameters, i.e.

a__(t) = _ ¢, to) z___(to) (48)
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_(t t )=

' 0

-_r
V

o

-gZ
r

o

r
o

0 0 1

0 0 0

0 0 0 0

0 0 0 0

5_ 3 5a 3 5c_3

5_40 5_50 5a6D

5_ 4 5(_4 8a 4

5_605a.i 0 8 c_50

0 0 0 0 1

L0 r 5a50
o ?g 5a6

0

I 0 0 8a60

(49)

I where some of the non-zero elements are Hsted as partials of the orbital para-

meters and are given by Ref. [4 ] as

l _ - _°_° _°v°r_°'*,°,o)•__ ('- _X_-O]
i _z40 -'7 g[--E'- xr o.

ro ._cJ_._L3 h rv

I _._o'-J ,-},,-,o,-_'_-,'-'o,)+,'-',_o("°o_7;",)]

(50)

(51)

I

l
II

I

r

5o,6----% r.-_ fg - - 2g ÷ (f- i)2 7¢, (x40
0 0

_4 r°% LFI_I %1_4 (l_r _ "_-- " - KJg]
5_40 _ r2v

(52)

fro u +;__
5_50 rv 2 ..

(53)

3v (t-to) f

(54)

v r 2 ro

I -_ {_-0-_)-,}{-_'-bo-_o(o,o-_°,0°,}2

I



J

V
r

o

--/_ [I r'_ ro

v2
o r o

(f - I) a40 }

(55)

b¢_6 r v G
V02r o o

O O

(56)

(57)

Ths transformagon rela_/n_ the variation of the conventional smm variable z___T=

(_R_,_._) to the wr_U_ns of the above set of paranmtersZ__ T ¢_x1, _a 2. • • • na 6)

L_ given by

A__(t) = P(t) _l__(t) and A_(t) = P(t) -1 A__(t) (58)

I where

i

I P(t) -

!
and

!

I P (t)'IT-

!

i .

-H Hx R
- 0 - - 0 0 R
v h

, (sg)
I

N

0 r h -_, _ -.._, _]•_-. _Hx_

-v_H HxR HxR 2a R_o 0 -'----o _ "-{'R_ ,_
h" hr" rv r" r"

o -_- o rv3 _-
m_

(60)
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The relationship between the transition matrix X(t, t o) for the conventional

state variables _x(t) and qs (t, to) for the above set of parameters _(t) is given by

I

I

I

-1 ^
(t, to) = P(t) _(t, to) P(to) and qJ(t, to) =P(t)-lx(t,to ) P(t o)

The scalar functions f, g, f, and _ are given by

(Elliptic) (Hyperbolic)

a (c_8_1) +1f=F"
O

a (cosh 8-1) + lf=r
O

(6Z)

_-,_-to_ 0-sin8 g=_-,#-to_ sinh8-8 (62)g m

n n

i :{ =-a2n
i = - J:"_- stn_ e

rr
o

a

i _= F(co8 e-z) +z $= a(cosh e- l) + l

I

I

I
I

I
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